Interpolation

and
Approximation

5.1

INTRODUCTION

An important problem often encountered in scientific work is that of ap-
proximating some very ‘‘complicated’” function, f(x), by a “*simpler’’ function,
p(x). The reader has already seen one form of this problem in calculus: if f(a),

f(a), f"(a),...,f%(a)are known at some point a, then the truncated Taylor’s
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expansion,

px) = fla) + f(a)x — a) + /7('(1_) & — ap +-- 4 f“/'ffa) (x — aff,

is a kth degree polynomial that approximates f(x) for x near a. If f**(x) is
continuous, then the error of the approximation at x is given by

f’(l.‘+ l)(g)
k + 1)

('\, . a)lc+l

where ¢ lies between x and «. There are, however, several obvious drawbacks
to this type of an approximation: the derivatives may not exist, calculating
them may be very difficult [or even impossible if, for instance, f(x) is given in
tabular form instead of in terms of a formula], f** " (£) may become quite large
and thus make the error large, etc. Even for a “"nice’’ function, such as f(x) =
cos(x) with @ = 0 where the Taylor (Maclaurin) expansion converges to f(x) for
any x and f%(0) is known for any &, this type of approximation is not usually
practical since many terms may be required to maintain accuracy for values of x
somewhat removed from 0 (see Problem 2).

Thus we see that the problem of approximation of functions must be
analyzed quite carefully to obtain practical computational procedures. In this
chapter we shall be mainly concerned with polynomial interpolation, spline
interpolation, and Fourier approximations. In the following chapter, we will
study their use in such problems as numerical integration and numerical differ-
entiation. For example if f(x) is approximated by p(x) and we wish to find a
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numerical approximation for [% f(x) dx or for f’(e) for some value «, then we
could use [ p(x) dx or p’(a), respectively, as these approximations. However,
it may be that while [} p(x) dx is a good approximation for b f(x) dx, p’(a)is a
poor approximation for f’(a) (and vice versa). Therefore an integral part of
designing an approximation for a function is the knowledge of how the approx-
imation is to be used subsequently. Thus Chapters 5 and 6 are intrinsically
related in that Chapter 5 develops some approximation techniques and the main
part of Chapter 6 discusses their utilization in integration and differentiation.
Then with this background, Chapter 6 concludes by discussing some further
approximation techniques.

We shall be principally interested in approximating continuous real-valued
functions, f(x), where x belongs to the closed finite interval [a, b]. We use the
standard notation C[a, b] to denote the set of real-valued functions that are
continuous on [a, b]. If p(x) is an approximation to f(x) where f € Cla, b], then
we need some way of measuring how good this approximation is. That is, we
must be able to answer this question: How ‘‘close’ is p(x) to f(x)? We will
naturally say that p (x) is a good approximation to f(x) if the function f(x) — p(x)
is small in some sense. So to measure closeness we need some sort of a mea-
sure of size for functions in C[a, b]. If (5.1), we have listed three commonly
used measures for the size of the function (f — p). These measures are called
norms, and the magnitude of the number ||/ — p|| provides us with a quantitative
way of gauging how good an approximation p (x) is to f(x). [The reader who has
covered the material on vector norms in Chapter 2 will recognize the norms
defined in (5.1) as natural extensions of the ¢, vector norms where (f — p) is
used in place of the vector (x — y) and integration is used in place of summa-
tion. |

b
£ = plh Ef £ = p(0)|w(x) dx (5.1a)
b
£ = pll = < f (f() = p(0)Pw(x) dx>1/2 (5.1b)
If = Plle = max [f(x) - p)]. (5.1¢c)

a=r=h

In (5.1a) and (5.1b) the function w(x) is a fixed weighting function that
provides us with some flexibility in measuring closeness. In all the cases we
consider, w(x) is continuous and nonnegative on (a, ), J% w(x) dx exists, and
I w(x) dx > 0. Finally, by way of notation, we shall denote the *‘zero func-
tion’* as 6 (x) where 6 (x) = 0 for all x in [a, b]; and we will let @, denote the set
of all polynomials of degree n or less. The following example illustrates that two
functions can be ‘“‘close’” in one norm but not in another.
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EXAMPLE 5.1. Let f(x) = #(x) and let w(x) = 1 for xin [a, ] with a = 0 and b = 3.
For any positive integer k, let f.(x) be given by (see Fig. 5.1)

ke — 1), for k2 = x=2/k?
filx) = 5 —k(kx — 3), for 22 = x =< 3P
0, otherwise.
Using these three formulas, we obtain \

W= A=k, |If = £l = V2N3, |IF = £ill- = &

Thus, in the sense of (5.1a), the distance between f(x) and f,.(x) becomes small for large
k: for (5.1b) the distance is constant for any &; and for (5.1c¢) the distance is large for large
k. Now we consider {||f — fi|[}i-, as a sequence of real numbers and see that

,‘II_I}L H/ - /I.||1 =0,
lim ||f = fil = V23,
and

Jim,[1f ~ £l = =.

In this context we therefore say that the sequence of functions, {f.(x)};-,, converges to
f(x) only in terms of the |||, distance measurement. [A sequence of functions, {¢,(x)}i -1,
is said to converge to a function g(x) with respect to a given norm, ||-|, if and only if .

Jim (lg; — gl = 0.]

The preceding example illustrates that the quality of an approximation is
completely dependent on how we choose to measure distance between func-

y = fi(x)

I | | |
0| 1/k2 2/k? 3/k2 1 2 3

Figure 5.1 Graph of y = fi(x); k = 1.
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tions. In most practical problems we would probably accept f,(x) for large & as a
“"good™ approximation for f(x) = 6 (x) since it is ‘‘bad’’ only in a small neigh-
borhood of a single point. However, there are practical problems in which even
moderate errors in a small neighborhood are unacceptable. For example, the
cosine routine in a computer must provide uniformly good approximations for
all xin [0, 5]. The choice of a distance measurement (norm) is dependent on the
underlying physical or mathematical problem. We note here that

b b
Ilf - Pl :f | fex) — p)| wix) dx =  max |f(x) — p)| f w(x) dx

=r=b
b
— H/ — /7||x <f w(x) d.r>

and similarly

1
z

b
I = ol == ol ([ i )

The number [ w(x) dx is a constant: so if |/ = p]|.. is **small,” then both L= pll

and ||/ — p||, are also **small.”” Thus the ||||-- norm is **stronger’* than the other
two norms, and we strive for goodness of approximation with respect to the ||-||.
norm whenever possible. (The reader with some advanced calculus background
will easily recognize that convergence of a sequence of functions in the |||,
norm is equivalent to uniform convergence.)

As we shall see shortly, we will normally be approximating functions with
polynomials. Two important reasons for this practice are that polynomials are
easy to use (for example, in integration and differentiation as in Problem 1) and
that polynomials can be used to provide very good approximations for func-
tions in C[a, b]. The first reason is obvious to the reader and evidence for the
second is provided by the following classical result (given here without proof)
of Weierstrass.

Theorem 5.1 Weierstrass
Let f€ Cla, b]. For each & > 0 there exists a polynomial p (x) of degree N, (N,
depends on &) such that ||f — Pl < e

This theorem says that any continuous function on the finite interval [a, b]
may be uniformly approximated by some polynomial. We conclude this section
with another classical result (again without proof). =

Theorem 5.2
Let f(x) be given in C[a, b] and let n be a fixed positive integer. If ||| is any one
of the three norms given above, then there exists a unique polynomial p¥(x) of
degree 1 or less such that ||/ — pH| = ||f = pl|| for all p(x) € @,.
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This theorem tells us that there is a unique ‘‘best”’ nth degree polynomial
approximation to f(x) with respect to any of the above norms. The reader
should be warned that the polynomial that is best with respect to one norm is
usually not the same polynomial that is best with respect to another. We shall
see in Section 5.3.1 that the polynomial that minimizes ||f — p||, for p(x) € @,
can be explicitly constructed whereas this is not usually true with respect to the
other two norms. However, Theorem 5.2 still has important theoretical implica-
tions with respect to these norms. Finally, let us define E,(f) = ||f — pil-
where p;(x) € @, satisfies ||/ — pj|l. = ||f — p||- for all p(x) € @,. [Usually, E,(f)
is called the degree of approximation for f(x) and p¥*(x) is called the best nth™
degree uniform approximation to f(x).] It is easily seen that if m > n, then
E,.(f)=E,(f). So, by Theorem 5.1, we obtain the result that lim, .., E,(f) =0
for any f(x) in Cla, b].

PROBLEMS, SECTION 5.1

5

1. One argument for using polynomials p (x) to approximate complicated functions f(x)
is that polynomials are easy to integrate, evaluate, and differentiate on the com-
puter. Write a program that accepts the coefficients of any 20th-degree or less
polynomial p(x) as input, together with either an interval [a, b] or a number c.
Develop the program to have the capability of calculating [% p(x) dx and the ith
derivative of p(x) evaluated at x = ¢, for any i, 0 = i = 20.

2. Find the truncated kth degree Taylor’s series expansion p,(x) for f(x) = cos(x) with
a = 0 and k arbitrary. Show that a bound for the error |f(x) — px(x)| is given by
|x®*1|/(k + 1)!. Given this bound, how large must k be in order that |p,(x) — f(x)| =
107 for x = I, for x = 2, and for x = 3? For k = 6, 8, and 10, write a short program
that calculates and lists p,(x), cos(x), and cos(x) — p.(x) for x varying between 0 and
3 in steps of 0.1.

3. Verify that the function ||{|.. defined on C[a, b] by (5.1c¢) satisfies the following three
conditions (where fand g are in C[a, b]):

a) ||¢|l- = 0 and ||g||.. = 0 if and only if g(x) = 6(x)

b) |leeg||- = |e| ||g|| for any scalar &

& I+ gll = 11l + -

To do this problem, recall that a continuous function defined on [a, b] attains its
maximum at some point x, in [a, b].

4. The sine-integral, Si(x), occurs frequently in certain applied problems where x > 0
and Si(x) is defined by

sic) = 200 gy
0
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One way to estimate Si(x) is to take the truncated kth-degree Taylor’s series expan-
sion pi(1), for f(r) = sin(s) with ¢ = 0, and use

f' pkt(,) (I'f

as an approximation to Si(x). How large must k be in order that
! pi)
‘ f ka"’ - Si(4)~ =109
0

To bound the error, use the fact that if |h(n)] = [q(n)| for 0 = r < x, then It |h@)| de =
It |a(0] dr.

5.2 POLYNOMIAL INTERPOLATION

Perhaps the simplest and best known way to construct an nth-degree polyno-
mial approximation p(x) to a function S(x)dn C[a, b]is by interpolation. Let Ko
Xy, ..., x, be (n + 1) distinct points in the interval [a, b]. Then p(x) € @, is said
tointerpolate f(x) at these points if p(x;) = f(x;) for 0 = j < n. For example, the
second-degree polynomial p(x) = —(@/m*)x* + (4/7)x interpolates J(x) = sin(x)
at the points x, = 0, x, = 7/2 and X, = 7. We must first show that such an
interpolating polynomial always exists and is unique. In doing so we shall
present two separate proofs since they both illustrate ways of constructing the
interpolating polynomial.

Theorem 5.3

Let {x;})_, be (n + 1) distinct points in the interval [a, b], and let {y;}’_, be any
set of (n + 1) real numbers. Then there exists a unique polynomial p(x) in ®,
such that p(x;) = y; for 0 = j < p. [Often the y;’s are determined by some

function, f(x); so we have the property that p(x;) = f(x)) for 0 < j < n.] .f

Proof'l. Foreachj,0 << n,let ¢;(x) be the nth-degee polynomial defined by

& = x)x — xp) -+ &~ 5 )~ Xye1) o (x = Xn)

f_;(,\’) T (xj — Xg) (-\'j = ) e (Xj . xjﬂ)(xj = X_i+1) T (-’(j — Xy)
_ . —x)
= 1.20“()\} =y ¢ e (5.2)

i#j

Then it follows for each i and j, that i(x;) = &;;. (The symbol §,; is defined to be
I when i = j and 0 otherwise. The symbol 8;; is called the Kronecker delta.)
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Since the sum of nth-degree polynomials is again a polynomial of at most nth
degree, the polynomial p(x) defined by (5.3) is in ®@,:

n

px) = Y y#ilx). (5.3)

i=0
Moreover, for 0 =< i = n, we have
plx) = yelolxs) + «* + yalalx) = il = ¥

If f(x) is a function such that f(x)) = y;, 0 = i = n, then it has in @, an
interpolating polynomial of the form

plx) = 2 Jx;)E(x). (5.4)
i=0
To establish uniqueness, let us assume that there are two different polynomials,
p(x) and ¢g(x) in ®,, such that p(x;) = g(x;) = y;for 0 = j = n. If r(x) = p(x) — q(x),
then r(x) € @, and furthermore r(x;) = p(x;) — q(x;) = 0 for 0 = j = n. By the
Fundamental Theorem of Algebra, r(x) = 0; so p(x) = g(x), which contradicts
our assumption.

Proof2. Letp(x) =ay+ awx + a,x* +--- + a,x" where the coefficients, a;, are
to be determined. Consider the (n + 1) equations

px;) = ay + awx; + ax} + -+ ax =y, 0=j=n (5.5)

In matrix form, Eqgs. (5.5) become

1 Xo A8 e x| ] as Yo

1 x  a  xi||a|_ |7 (5.6)

1 Xn X% il X:; dy Yn
or Va =y where V is the coefficient matrix in (5.6), a = [a,, a, . . . , a,]", and
y = [Yo» Y1» - - - » yuI'. The matrix V is called a Vandermonde matrix, and it is
easy to see that V is nonsingular when x,, x;, . . . , x, are distinct. To see this,

recall from Section 2.1 that V is nonsingular if and only if 0 is the only solution
of Va = 0. So if the vector a is any solution of Va = 0, then p(x) = a, + ayx +
-+ 4+ a,x" is an nth-degree polynomial such that p(x;) = 0forj=0,1,...,n.
Since the only nth-degree polynomial with (n + 1) zeros is the zero polynomial,
it must be a = 0 and hence V is nonsingular. Thus Egs. (5.5) have a unique
solution for the a;’s, and the polynomial p(x) found by solving (5.6) is the
unique interpolating polynomial in @,,. B

From the uniqueness of the interpolating polynomial in @,, both (5.4) and
(5.6) must yield the same polynomial even though it is written in different
forms. The form given by (5.4) is called the Lagrange form whereas the con-
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struction of p (x) by (5.6) is called the method of undetermined coefficients. We
should note three obvious facts here. First, if f(x) is itself in ®,, then f(x) =
p(x) for all x by the uniqueness property. Second, it is possible that the unique
solution of (5.6) may yield a, = 0 (and possibly other coefficients may be zero
also); so p (x) may be a polynomial of degree strictly less than n. Third, if m > n,
there is an infinite number of polynomials, ¢(x), in ®,, which satisfy qx;) =y,
0 = j = n. [Note that we can arbitrarily specify another point, x,. ,, in [a, b]
and any other value y, ,,, and then construct ¢(x) € ®, ., such that q(x;) =y,
0 =j=n + 1. Thus the uniqueness holds only for @,.]

EXAMPLE 5.2 As a simple example of a problem involving data fitting, suppose we
want a second-degree polynomial, p(x), such that p(0) = —1, p(1) = 2, and pR) =17.
Using the Lagrange form, we have

_G-Dx -2 D
- 5 !

) £1) = =x(x = 2), and £(x) = X — 1)

€ 5

Thus p (x) is given by the formula p (x) = —€,(x) + 2€,(x) + 7€,(x), or upon simplification
p(x) = x* + 2x — 1. Alternatively, using the method of undetermined coefficients with
Xo =0, x;, = 1and x, = 2 in (5.5), we obtain

ay = -1
g+ o+ az=2
ay + 2a; + 4a, =17.

Solving this system gives p(x) = 12 + 2x — 1.

The method of undetermined coefficients is a procedure that has wide application to
other types of interpolation problems. For example, let x, = 0, x, = 7/6, x, = /4, and
x; =a/3 with y, =0, y, =2 —\/3/2, 5, = 1 + \/2/2, and y; = 3/2. Suppose we wish to
find a trigonometric polynomial, p (x), of the form p (x) = Cy + Cycos(x) + C, cos(2x) +
C; cos(3x) such that p(x;) = y; for 0 = j = 3. These four equations yield the matrix
equation [as in the derivation of (5.6)]

11 1 1 G 0
1 V312 1/2 0 Gf_|2="32 5.7
1 V212 0 212 || G 1+\V212 | i
| 12 =12 -1 C; 32

The solution of this system by Gauss elimination yields C, = 1, C;, = —1, C=2,C3=

—2. Therefore p(x) = I — cos(x) + 2cos(2x) — 2 cos(3x) is a trigonometric polynomial
satisfying p(x) = y;, i = 0, 1, 2, 3.

5.2.1. Divided Differences and the Newton Form
of the Interpolating Polynomial d

If f(x) is a function defined on [a, b] and if x, x,, . . . , x, are distinct points in
[a, b], then there is a unique polynomial p(x) in @, that satisfies p(x;) = f(x,),
0 = i = n. There are many ways to represent this interpolating polynomial
p(x), but some representations are more useful for computation than others (in
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mathematical terms, we would like to use a basis for @, that is convenient with
respect to computation). For example, although we can immediately express
p(x) in the Lagrange form

px) = cpo(x) + ¢ €y(x) + -+ + ¢ ly(X)

simply by choosing ¢; = f(x;), 0 = i = n, this form is cumbersome to use in
common operations such as differentiation and integration. The most conven-

~ient form for these operations is usually p(x) = b, + b,x + -+ + b,x"; but here,

to find the values of the ;s we must go through the effort of solving the system
in (5.6) or collecting coefficients of like powers of x from another form of p (x)
such as the Lagrange form. Hence, the manner in which p (x) is to be used is an
important factor in the choice of the form of p(x). In this section we consider
yet another representation for p (x), the Newron form, which facilitates compu-
tations with p (x) when the interpolation points are equally spaced or when we
wish to add further interpolation points to get a higher-degree approximation.

The Newton form for p(x) arises when we express the interpolating
polynomial p(x) in the form

p(x) = @y + @ylx — xg) + ol — %) — %) + @lx — %)lx — x)lx = )+

e g = )l = x ) — X)X — Famo)s (5.8)
If we impose the interpolatory constraints p(x,) = f(xo), plx) = fx), . . .,
p(x,) = f(x,), then it is clear that we can solve for the coefficients a,, a;, . . . ,

a, in (5.8). For example, setting x = x, in (5.8), we have f(x,) = a,. Next setting
X = x;, we have f(x,) = a, + a,(x; — xo) or a; = [ f(x;) — f(xp)]/(x; — xo). For x =
Xo, We have f(x,) = a, + a,(x; — xo) + as(x; — xp)(x; — x,): and it is not hard to
see that this leads to

Sl) — fxy) _ Sl — fxo)
N — X X — X
Xo — Xy

a, =

Clearly, determining the coefficients a; in (5.8) is recursive in nature and we can

mechanize the procedure (in a way that is suited for computation) by introduc-

ing the related ideas of divided differences and the divided difference table.
Given Xg, Xis »« »q 3 v, in [a, b], we define the first divided difference,

SIxis xi411, bY

Sia ) — Jx)

Xit1 — X

O=i=n-1.

Sflxi, x4 1] =
We define the kth divided difference inductively by

Sl s 15 Kivos o o5 3 B il e Biision « ~ o ~\'i+k~1]
Xitr — X

Pl B o« w 5 Xivkl =

5.9
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where 0 = i = n — k. For example,

Sxg) — fx,) o flx, X x5] = Slxas x5] = fTxs X4] "

X3 — X X5 — X3

flxe, x3] =

Flow x5 2] = Flxi, o, %41
X4 — X ]

f[xl’ X2, X3, ,’(‘4] =

We will show shortly that the coefficients «; in (5.8) are given precisely by a; =
SfIxos %15 « . ., x;]. (Note that as found above, a; = f[x,, x;] and a, = fIx;, x;,
X;].)

The calculation of divided differences can be organized by constructing a
divided difference table, (see Table 5.1). Table 5.1 presents the definition (5:9)
in a rather schematic form: entries in the kth column are obtained by *‘dif-
ferencing’ successive entries in the (k—1)st column and then dividing by the
appropriate difference x;,, — x;

TABLE 5.1 A divided difference table.

Xo flx) - .
xi flx) ';R"’ ;'% Flxs, %o, Xa] Lo, 21 o, 2]
Xy flxy) f[xly rz] f[-h, Ko Xl f[\’ﬂ, \’.1’ xz’ .\’3] Flxs,s %5, %5, K ]
Xy f(xg) f[\': r:] Floes Xy %] ALy A2y A3y Xy

Xy flxy)

)('[x X ] .f‘[xn-Zs Xn—1s xll]
w—1s Ap

xm Sl) ©

EXAMPLE 5.3. For f(x) = x> — x* + 2x2 + |, we construct the divided difference
table for the data

X J(x)
-2 -39
=] 1

0 |

1
2
3 181
4 801
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The divided difference table is

T
—2 : -39 40
—J 1 -20
I 0 7
0 1 ) 1 3 —1 |
1 : 3 10 4 0
22 19 1
2 [ 25 156 67 55 9
3 : 181 620 232 *F
4 ! 801

For instance, x5 = 1, x;, = 2, x5 = 3; 50 f[x3, x,] = 22, fx4, x5] = 156, and f[x3, x4, x5] =
67. To display the recursive nature of (5.9), we consider the entries along the upper
diagonal, beginning with f(x,) = —39. The next term along the diagonal is f[x,, x,] =
(1 — (=39))/1 = 40, followed by f[x, x;, X.] = (0 — 40)/2 = —20; then f[x,, x;, Xo, X3] =
(1 — (=20))/3 = 7; then fx,, X1, X3, X3, X4] = 3 — 7)/4 = —1, etc.

A divided difference table contains a good deal of information that is rele-
vant to interpolation. The downward slanting diagonals contain the coefficients
of various interpolating polynomials, and we will see that the columns contain
information that can be used to estimate interpolation errors. Our first objective
is to find the coefficients «; in (5.8), and to that end we state Theorem 5.4

below.
Theorem 5.4
Suppose that f(x) is defined on [a, b] and suppose that x,, x;, . .. , x, are
distinct points in [a, b]. The kth degree polynomial p (x) interpolating f(x) at x;,
Xig1s w « = 5 Xpopds given by
p () = fOx) + flxis xiv1d0e — x) + flxi, Xig1, Xl = ) — x3490) +

oen b F X Bypas ¢ om0 Freall® — 2Yx — Xipg) - - (X = Xisk—1)-

Since the notation is somewhat involved, we give several illustrations of the
theorem before sketching the proof. For example, according to Theorem 5.4,
the quadratic polynomial interpolating f(x) at x,, X3, X, is given by p (x) = f(x;) +
Flxa, X3)(x — x2) + fIX25 X3, X4J(x — X5)(x — x3); and we observe that the coeffi-
cients f(xy), f[xs, X3, flx2s X3, x,] are found in Table 5.1 on the downward
diagonal that begins at f(x,). As another special case, the cubic polynomial
interpolating f(x) at x,, X;, Xs, X3 is (according to Theorem 5.4) given by

p @) = flxo) + flxe, X:1x — x0) + flxo, X1, Xo]x — x0)(x — x1)
i3 f[Xn, X1, X2, Xs](x — Xp)x — )@ — %) .

Again, we note that the coefficients of p (x) are found on the downward diagonal
that starts at f(x,) (see Table 5.1).
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Proof.  The proof of Theorem 5.4 is by induction on k. The proof is simple and
we sketch only a part of it here; the rest is left to the exercises. For k = 1,
Theorem 5.4 asserts that p(x) = f(x;) + f[x;, x;4J(x — x;) is the first-degree
polynomial interpolating f(x) at x; and x; ;. Clearly p(x) is a linear polynomial,
and it is also obvious that p (x;) = f(x;). At x = x;,,, we have p(x;.,) = f(x;) +
Sl xi04divn — X)) = flx) + (f(xiv1) = f(x)); 80 p(x;+q) = flxiy,). This
argument shows that Theorem 5.4 is valid for & = 1.

Rather than doing the general induction step, we show that Theorem 5.4 is
valid for k = 2, given that the theorem holds for k = 1 (virtually the same proof
will work for general & and is left to the exercises). Let p(x) be the polynomial
of degree two interpolating f(x) at x;, x; ; 1, X; 1 ». We know we can represent p (x)
in the form

p(X) = ag + a;x — x;) + ax(x — x)(x — x;51) = g(x) + ax(x — x)(x — xi44).

Now since p(x;) = f(x;) and p(x;;,) = f(x;4,), it follows that g(x;) = f(x;) and
8(xi+1) = fl(x;4,). Since g(x) is linear and since Theorem 5.4 is valid for k = 1,
we know that g(x) = f(x;) + f[x;, x;4](x — x,). From this, p(x) has the form

p ) = flx) + flxi, xiv 1] — ) + aa(x — x)(x — x;4y),

and all that remains is to show that a, = fx;, x; ;, X;1»]. To show this, let h(x)
be the linear polynomial that interpolates f(x) at x;,, and x;,, so that h(x) =
J@iv1) + flxie 1, Xis2J(x — x;44). Define Q(x) by

& = x)hx) — (x — Xi+2)g(x)

Xive = X

O =

Note that Q (x) has degree two, and by direct substitution, Q (x) interpolates f(x)
at x;, X;i, X;42. Since polynomial interpolation is unique, Q(x) = p(x) and
hence the coefficient of x* must be the same in both Q(x) and p (x). However,
the coefficient of x* in Q(x) is

Pl Xyl = S, Xi+1];

Xita = X

so we have shown that a, = f[x;, x;. 1, X; ;2] ]

The Newton form of the interpolating polynomial is given explicitly in a
corollary to Theorem 5.4. ’

Corollary -
The kth degree polynomial interpolating f(x) at x,, x;, . . . , x; is given by

p(x) = flxo) + flxo, x1](x — x0) + flxg, X1, XJ(x — X)(x — x1) + -+

+ Flas s+« » » ZlF — Bl — 2 <+ « (& = 2p_3).
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Interpolation and approximation

As an example, consider the function f(x) from Example 5.3. According to
Theorem 5.4, the cubic polynomial interpolating f(x) at =2, —1, 0, 1 is

gx) = -39 4+ 40(x +2) —20(x + 2)(x + 1) + 7(x + 2)(x + Dx (5.10)

and this fact can be verified directly. An observation that may not be obvious is
that when we use the Newton form, we can add another interpolation con-
straint without sacrificing our previous effort. To be explicit, suppose p;(x)

interpolates f(x) at (k + 1) points x,, X, . . ., X;. To construct a polynomial p (x)
that interpolates f(x) at (k + 2) points xq, Xy, - . . , Xz, Xz+;, We merely add
another term to p;(x):

p(x) = pr(x) + fTXos X15 + « + 5 X X4 1]&x — X)x — xp) .+ . (6 — x). (5.11)

The observation above is one computational feature that recommends the New-
ton form of the interpolating polynomial.

EXAMPLE 5.4. As an illustration of (5.11), we can build the polynomial p(x) that
interpolates f(x) at =2, —1, 0, 1, 2 from ¢ (x) in (5.10):

px) =qx) — (x + 2)(x + Dx(x — 1).

A variety of different interpolating polynomials can be found from a divided difference
table such as the one in Example 5.3. For instance, the cubic polynomial interpolating

f(x)at0, 1, 2, 3 is given by

px) =1+ 2x + 10x(x — 1) + 19x(x — 1)(x — 2). (5.12)

The coefficients of p(x) in (5.12) are found (using Theorem 5.4) from the downward
diagonal that starts at f(0) = 1. Finally, it should be clear that additional data can easily
be added to either end of a divided difference table. To illustrate, if we add the point x =
—3 and f(x) = —305 to the head of the table in Example 5.3, we can quickly construct a
new diagonal that incorporates this additional information into the existing table.

PROBLEMS, SECTION 5.2.1

1. For each set of tabulated data below, let p (x) be the cubic interpolating polynomial.
Using the Lagrange form of p(x), evaluate p(x) at x = —2. [Note that you need not
find the coefficients of x’ in p(x); you need only evaluate ¢;(—2) for 0 = j = 3.]

a)y =x y
-1
3

11
27

WS —
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Repeat Problem 1, but use the method of undetermined coefficients to find p (x).

For each set of data in Problem 1, set up the divided difference table and use it to
construct p (x) as in the corollary to Theorem 5.4. For each interpolating polynomial
p(x), evaluate p(—2). [Again, note that you need not write p(x) in the form a,x® +

~axx® + ayx + a, to calculate p(—2).]
. Add the data point x = 4, y = 10 to each of the tables in Problem 1. Form the divided

difference table for these data by adding an upward slanting diagonal to the table
constructed in Problem 3. Form the quartic polynomial ¢ (x) that interpolates these
five data points, and evaluate g(x) at x = —2.

. Using the divided difference table in Example 5.3, construct the polynomial inter-

polating f(x) at
a) x=-1,0,1 b) x=-1,0,1,2 ¢ x= =150 1;2:3
d) x=0,1 ) x=0;1,2,3,4 «

. Use the method of undetermined coefficients to find a quadratic polynomial, p(x)

such that p(1) = 0, p’(1) = 7, and p(2) = 10. [Note the derivative evaluation. You
must modify (5.6) slightly.]

. Suppose we know that f(s) has the form f(t) = ae? + be™' where a and b are

unknown. Use the method of undetermined coefficients to find « and b given that
f(t,) = 1 and f(¢,) = 7.5 where #, = 0 and 1, = In(2). Suppose next that f(z) is to be
determined by some experimental observations in which f(¢t,) = 1, f(t,) = 7, and
f(t;) =9 with £, = In(3). Since we have three data points and only two parameters (a
and b), we do not expect to be able to find ¢ and b/ by the method of undetermined
coefficients. Use the procedure of Section 2.5 to find the best least-squares solution
for a and b.

. Write a subroutine for polynomial interpolation. Your subprogram should accept an

integer N (N = 20), N-dimensional arrays of data X(I) and Y(I), and an evaluation
point ALPHA. The subroutine should calculate the divided difference table, con-

struct the interpolating polynomial (of degree N — 1), and return the value of the
polynomial at x = ALPHA. Test your routine with the input data (x;, y;) where x; = i
andy, =p(x),0=i=<4,p(x) =x*+ 1. Evaluateata = —1 + k2, k=0,1, ..., 12;

and note that p(«) should equal «* + 1 for any «.

. To see the sorts of results that can be expected, use the program in Problem 8 to

interpolate f(x) = sin(x) at the knots x,, = .1 + k/10, 0 = k = 9. If p(x) denotes the
ninth degree interpolating polynomial for f(x), print f(«), (@), and the relative error
(fla) — p@)/f(@) fora = .05 + k/10,0 < k < 11.

. Repeat Problem 9 for f(x) = 1/(1 + x?) and the knots x;, = =5 + £, 0 < k = 10 and

a = —5.5+k, 0=k =12. Also call a plotting routine and plot f(x) and p(x) over



