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4.3 FIXED-POINT METHODS

Two methods that normally converge more rapidly than bisection and Regula
Fualsi are Newton’s method and the secant method. Although the Newton and
secant methods have a simple geometric interpretation for ‘‘nice’” functions
(see, for instance, Figs. 4.4 and 4.8), they do not have the root-bracketing
property, and do not guarantee convergence for all continuous functions as do
the bisection and Regula Falsi methods. When they do converge, however, the
Newton and secant methods are generally much faster. In order to explain
these convergence properties, we shall derive these methods via a concept
known as the fixed-point problem and illustrate them geometrically after they
are derived. Another important reason for taking this approach is that it can
easily be extended to solving systems of equations in several variables. Fur-
thermore, we shall see that other problems such as the iterative methods of
Chapter 2 and the predictor-corrector methods of Chapter 7 are special cases of
fixed-point iterations and can be analyzed by the procedures of the next sec-
tion.

To illustrate a specific fixed-point problem, we consider the geometric
rationale for Newton’s method as given in most calculus texts. This geometric |
interpretation is quite simple (see Fig. 4.4). Given an initial estimate x, to a root
s of f(x) = 0, we first construct the tangent line to the curve y = f(x) through the 1'
point (x,, f(x,)) and find that the equation of the tangent line is y = f"(x,)(x — x) 1
+ f(x,). We then find the point x, where the tangent line intersects the x-axis,
and x, is taken as the next approximation to s. The process is then repeated 1
with x, playing the role of x,; and a new approximation to s, xs, is found. Since
Xy = xo — fx)lf(xo), xo = x; — flx,)[f"(xy), etc., we are generating the sequence |

1

S(x,)
X"“:x"—f’—(x’:j’ n=0,1,....
y = f(x)
|
S Xn42 Xn+1 Xn

Figure 4.4 Newton’s method.
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Thus Newton’s method is a special case of an iteration of the form Xnt+1 = g(x,)
[where for the case of Newton’s method, g(x) = x — f@)/f'(x)]. The analysis of
this general iteration, x,,, = g(x,), is the topic of the next few sections.

4.3.1. The Fixed-Point Problem

Throughout this analysis let us be careful not to lose sight of our prime objec-
tive: given a function f(x) where ¢ = x < b, find values s such that f(s) = 0.
Given such a function, f(x), we now construct an auxiliary function, g(x), such
that s = g(s) whenever f(s) = 0. The construction of g(x) is not unique. For
example, if f(x) = x* — 13x + 18, then possible choices for g(x) might be (1) g(x)
= (x® + 18)/13, (2) g(x) = (13x — 18)"3, (3) g(x) = (13x — 18)/x2, and “4) glx) =
x* — 12x + 18, to list a few. In each of these cases, if f(s) = 0, then s = g(s).

The problem of finding s such that s = g(s) is known as the fixed-point
problem, and s is said to be afixed point of g(x). Thus if we develop an efficient
procedure for finding a fixed point for g(x), ¢« = x = b, then we automatically
have an efficient procedure for finding a zero of f(x), a = x < b. The fixed-point
problem turns out to be quite simple, both theoretically and geometrically. It is
immediate from Fig. 4.5 that g(x) has a fixed point in the interval [a, b]
whenever the graph of g(x) intersects the line y = x.

V=%

y =g(x)

[ | | |

a s, Sy Sy b

Figure 4.5 5, = g (s);i =1, 2, 3.

>

It is also obvious that on any given interval, I = [a, b], g(x) may have many
fixed points or none at all. Thus, in order to ensure that g(x) has a fixed point in
1, certain restrictions must be placed on g(x). First of all, let us assume for each
x € I, that g(x) € I. This is plausible since, for s € I, s cannot equal g(s) if no
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g(x) belongs to 1. [Hereafter this condition will be written as g(/) C 1.] Even
with this restriction, g(x) may still not have a fixed point in /. For example if
g(x) is discontinuous, part of its graph may lie above y = x and part may be
below. However if we also require g(x) to be continuous, we can prove that g(x)
must have a fixed point in 1. To see this, suppose that g(/) C I and g(x) is
continuous. Observe that g(/) C I means a =< g(a) = b and a = g(b) = b. If
either a = g(a) or b = g(b), then that endpoint is a fixed point. Let us assume
that such is not the case so that (g(a) — a) > 0 and (g(b) — b) < 0. For F(x) =
g(x) — x, F(x) is continuous and F(a) > 0 and F(b) < 0. Thus, by the inter-
mediate value theorem, there exists at least one s € I such that F(s) = g(s) —
s = 0. Therefore we have established Theorem 4.1.

Theorem 4.1

If g(I) C I and g(x) is continuous, then g(x) has at least one fixed point in /.

In order to ensure that g(x) has a unique fixed point in /, we must not allow
g(x) to vary too rapidly. Thus we make the additional assumption that g'(x)
exists on / and that |g’(x)| = L < 1forall x € I. [Note that this condition implies
that g(x) is continuous on /.] Now let us assume that s, € I, s, € I, 5, # 55, and
s, = g(s,) and s, = g(s,). Then by the mean-value theorem with ¢ between s, and
82,

|s2 = 81 = |g(s2) — g(s0)] = |g'@E)sz — s)| = L|sy — 51| < |s2 = 54,

which is a contradiction. Thus we have proved Theorem 4.2.

Theorem 4.2

If g(I) C I and |g’(x)| = L < 1for all x € I, then there exists exactly one s €
such that g(s) = s.

Now that we have established a condition for which g(x) has a unique fixed
point in I, there remains the problem of how to find it. The technique we shall
employ is known as the fixed-point iteration, given by the following algorithm,
and illustrated in Fig. 4.6.

Let x, be arbitrary in I = [a, b], and let x,, ., = g(x,) for all n = 0.

Geometrically, this sequence can be pictured in the following way. Given
any x, of the above sequence, then x, ,; = g(x,) is the y-coordinate of the point
(x,, g(x,)) on the graph of y = g(x). Now consider the point (x, ., X, 1) =
(X, +1, g(x,)), which lies on the graph of y = x. The vertical projection from this
point to the x-axis yields the point (x, . ;, 0); so we know the position of x,,,; on
the x-axis and are ready to repeat the process as illustrated in Fig. 4.6.

Note that if for any n, x, = s, then x,,, ; = g(x,) = g(s) = s = x,,. Similarly,
x, = s, for all m = n, and the sequence stays ‘‘fixed”’ at s. We shall now show
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y =g(x)
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Figure 4.6 The fixed-point iteration.

that under the conditions of Theorem 4.2, the fixed-point iteration converges,
and we shall give a bound on the error after n steps.

Theorem 4.3

Let g(/) C I =[a, b]and |g'(x)| = L < 1 forall x € I. For x, € I, the sequence
x, = gx,_y),n=1,2,...converges to the fixed-point s, and the nth error,
e, = x, — s, satisfies

n

leal = g =y I = xl-

Proof. By Theorem 4.2, we know there is precisely one fixed point s in /.
Given any n, there exists a mean-value point £, between x,,_, and s such that
|xn = 5| = |gCa-0) — )| = |'ED| |¥n-1 — 8| = L|xuy — 5.

Successive repetition of this inequality yields |x, — s| = L"|x, — s|. Since 0 =
L<1,

lim L* = 0, and so lim x, = s.
n—ow

n— o
Thus the method is convergent. To establish the error bound, note that
g = 8| = g — x| + |3 — 8] = | — 2] +Lig— 5.

Therefore, (1 — L)|x, — s| < |x; — x,|: and since |x, — s| < L"|x, — s
that

, it follows

|z = &= ¥z = )1 = L). ]
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Theorem 4.3 bears a striking resemblance to Theorem 2.2 in Chapter 2, and
the proofs are essentially the same. One important feature of Theorem 4.3 is
that it provides an error estimate at each step and hence can be used as a test
for terminating the iteration. Lacking an estimate such as the one provided by
this theorem, we are left only with the possibly unattractive alternative of
testing |x,., — x,| to determine whether or not to end the iteration.

Theorem 4.3 is called a ‘‘nonlocal’” convergence theorem because it
specifies a fixed, known interval, I = [a, b], and displays convergence for any
X, € 1. Often it is not possible to specify such an interval ahead of time, but we
might still hope that the fixed-point iteration would converge if we could man-
age to make our initial guess, x,, ‘‘sufficiently close’’ to the fixed point s. Any
theorem that says, “‘If the initial guess is ‘very close’ to the solution, then the
method will converge,’” is called a ‘‘local’” convergence theorem because it
does not specify beforehand precisely how close x, must be to 5. The following
is an example of a local convergence theorem.

Theorem 4.4
Let g'(x) be continuous in some open interval containing s where s is a fixed
point of g(x). If |g'(s)| < 1, there exists an & > 0 such that the fixed-point
iteration is convergent whenever |x, — s| < &.

Proof. Since g'(x) is continuous in an open interval containing s and \g’(s)| <
1, then for any constant K satisfying g’(s)] < K < 1, there exists an ¢ > () such
that if x € [s — &, s + €] = I, then |g'(x)] = K. By the mean-value theorem,
given any x € I, there exists an n) between x and s such that |g(x) — s| - \g(x) =
g(s)| = |g'm)||x — 5| = Ke < ¢, and thus g(I,) C I,. Therefore by using /. in
Theorem 4.3, our result is proved. u

(Note that this theorem does not say what the value of ¢ is; the theorem
merely assures us that there is an e-neighborhood of s where the fixed-point
iteration will converge.) Problem 7, gives a contrasting result, showing that if
|g'(s)| > 1, then there is a neighborhood of s in which no initial guess (except
xo = s) will work.

PRQBLEMS, SECTION 4.3.1
1. The equation x3 — 13x + 18 = 0 is equivalent to the fixed-point problem x = g(x) for
each of these choices:
a) g(x) = (x® + 18)/13
b) g(x) = (13x — 18)*
c) gx) = (13x — 18)/x?
d) g(x) = x® — 12x + 18.

Show by direct substitution that s = 2 is a fixed point in each case above. For which
choices is [g'(x)| < 1?
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2. The proof of Theorem 4.4 shows that if s is a fixed point of g(x) and if g’ =K<1

in/=[s — e, s + €], then the fixed-point iteration will converge to s for any x, in I.

_ For the appropriate choices in Problem 1, determine some value for €. Having I, set
/" xy = s + & and execute four steps of the fixed-point iteration. *

" 4
[ 37f Verify that the equation x* — 5x + 6 = 0 is equivalent to x = g(x) for each of these

\ J choices:
a) glx) =x2—4x+6
b) g(x) =5 — 6/x
c) glx) = (5x — 6)}
d) glx) = (x* + 6)/5. /-~
‘ _~Find the roots of x* — 5x + 6 = 0 and repeat Problem 2 for each of the roots.

/4. Véﬁiy that the equation x* — ¢ = 0 (¢ > 0) is equivalent to the fixed-point problem

\__X=(x?+ ¢)[2x. One fixed point is s = \/c; verify that 0 < g'(x) </1 for Ve < x < =.
By Problem 5 below, the fixed-point iteration will converge for any x, in (Vc¢, ).
Set x, = ¢ and execute six steps of the iteration for ¢ = 3, 5, 7. Compare your
estimates with the actual solution.

5. Suppose g'(x) is continuous on [s, b] where s is a fixed point of g(x). Suppose also
that 0 = g'(x) = K for x in [s, b] where K < 1. Show that [s, b] satisfies the
hypotheses of Theorem 4.3. Also show that s =+ <x,,, = X, == x, < x,when
X, is in [s, b].

6. Evaluate: s = \3/6 + /6 + /6 + - [Hint: Let x, = 0 and consider g(x) = ¥/6 + x.]

7. Suppose g(s) = s, g(x) is continuously differentiable in an interval containing s, and
|g’(s)| > 1. Show there is & > 0 such that if 0 < |xo — 5| <&, then |x, — 5| < |x, — 5|
(thus, no matter how close x, is to s, the next iterate is farther away).

8. Figure 4.6 illustrates the case where —1 < g'(s) < 0. Draw similar graphs illustrating
these cases:

0= g'ls) < 1; 1< gs), g'l<-1,

/ 9]_et g(x) = x*. From a graph (as in Problem 8), deduce for what values Xy — 80 L0 <
/ o, the iteration x; . ; = g(x;) will converge to a fixed point of g(x) and for what values
X, will the iteration diverge.

10. For the equation f(x) = 0 with f(x) = cos(x) — x (as in Example 4.1), a natural
associated fixed-point problem is x = cos(x). As in Problem 9, graph g(x) = cos(x)
and convince yourself from the picture that the sequence Xi+1 = g(x;) will converge
for any x, € [0, 1]. Program this iteration and test your program with Xo=1and x, =
0.1. Use Theorem 4.3 to prove that the sequence converges for any x, € [0, 1], and
print out both the theoretical error bounds and the actual errors at each step of the
iteration. >

11. Prove the following simple variation of Theorem 4.4. Suppose g'(x) is continuous on
[a, b]and suppose [¢'(x)| = K < 1 forall x in [a, b]. Suppose also that there is a fixed
point s of g(x) in [a, b]. Then for any x, in [a, b], the fixed=point iteration converges
to s. [Hint: as in the proof of Theorem 4.4, show that the hypotheses of Theorem 4.3

are satisfied. | M Toud i

-
o

(0 = a2+ o

ap/ AR . ( 5 _
7k A o >
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=\

3 12.) Show that uniqueness of the fixed point in / = [a, b] can be established with the

|/ hypothesis that g(x) is differentiable on 7 and g'(x) = L < 1 (this hypothesis is
weaker than the one employed in Theorem 4.2).

4.3.2. Rate of Conv‘érgence of the

Fixed-point Algorithm

In this section, let s be a fixed point of g(x) where g(x) satisfies the hypotheses
of Theorem 4.4 in an interval /. Let x, € I; and for each &, let ¢, = x;, — s.
Further, let us suppose that the (k + 1)st derivative of g(x) is continuous on /
[hereafter written: g € C**'(I)]. To determine how the errors decrease at each
step of the iteration, we expand g(x) in a Taylor’s series about x = s. This
expansion gives us

e K ¢
ens1 = 8lx,) — g(s) = g'(s)e, + g—z(,b—)E?, s dmaEp gT(é)e’:; + Epn (4.1)

where
Ek.n = gtk+1)(a:1)€ﬁ+l/(k T 1)'

(and where the mean-value point «, is between x, and s). Suppose first that
g'(x) # 0 for all x € I. From (4.1) with k = 0, we have

- €nt+1 _
€nt1 = g’(an)en or ne == gl(an)-
n

By Theorem 4.4, we have lim, _...x, = s; so lim,_,.. @, = s as well. Using the
continuity of g’(x), we find

Cn+1

lim = g'(s). (4.1a)

n—w €y
The assumption that g'(s) # 0 means (for sufficiently large n) that e, , =
g'(s)e,. Such a rate of convergence is called linear or first-order convergence.
By contrast, if ¢g’(s) = 0 and g"(x) # 0 for all x in /, then [from (4.1) with k = 1]
we obtain the stronger result
2 ()u+1 P g”(S)
1 A TI RhARS

This case, in which the (n + 1)st error is approximately proportional to the
square of the nth error, is called quadratic or second-order convergence.

Similarly if g'(s) = g"(s) = -+ = g"®(s) = 0 and g** P(x) does not vanish on
I, then we have ‘‘(k + 1)st order’” convergence:
U(k‘+ D o
]lm €n+1 = (‘) (41C)

n— €I,‘[+1 (k + 1)!'

Thus the more derivatives of g(x) that vanish at x = s, the faster the rate of
convergence of the fixed-point iteration. In the analysis above, we implicitly
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assumed that ¢, # Ofor n = 0, 1,2, . . . . This assumption is always a valid one
if x, # s and if (as we required) g”(x) # 0 for x € I when g'(s) =+ = gl —V(s) =
0. For example, consider the linear case, in which g'(s) # 0. Let m be the first
positive integer such that ¢,, = 0. Then

0= Cm = g(-xm—l) A g(s) = g’(oz)(x,,,,l . S) = gl(a)em—l

where « is between x,, _; and 5. As g'(x) # 0 for all x in /, then ¢,,_, = 0, which
contradicts our choice of m. Thus if ¢, # 0, then ¢, # Oforn=1,2, . ...

We shall be particularly interested in quadratic convergence since this
leads to the derivation of Newton’s method. For now, however, we pause to
consider the slowest case, g'(x) # 0 for all x € I; and we shall develop a way to
speed up the convergence of these sequences. The technique we shall employ is
called the Aitken's A%-method.

We shall emphasize that Aitken’s method can be used on sequences other
than those generated by fixed-point iteration and that we can employ the A2-
method in different procedures in other chapters. [For example, we note by
Problem 14 that the power-method sequence (see Chapter 3) can be accelerated
by Aitken’s method by virtue of Theorem 4.5.] Thus we present Aitken’s
method in a context completely divorced from the fixed-point iteration and in
its full generality. This method is given in the following algorithm.

Let {z,}7-, be any sequence that converges to r*. Form a new sequence
{t;}7_, by the formula

_ Az
A,

where At, = t,., — t, and A%, = t,,, — 2t,+, + t,. The symbols A and A2 are
Sforward differences, but we will defer the theory of differences until later.
Equation (4.2) is an ‘‘extrapolation’” procedure that is suggested by considering
sequences {x,}, which are converging in a ‘‘fairly regular’’ fashion, such as the
sequences generated by a linearly converging fixed-point iteration where

tl,l = t)l (4'2)

lim Xnt+1 — S
n—>o X, —

= g'(s)

[thatis, x,., — s = g'(s)(x, — s) when n is large]. If we knew, for example, that
Xyi1— S =B(x, —s)and x, ., — s = B(x,+; — §), then we could use these two
equations (in the unknowns B and s) to solve for s and obtain

- 2
Xn — (-)‘n+1 — -Xn)
. - 4 3
Xnt2 — 2-xn+1 + Xy

s =

which is exactly analogous to Eq. (4.2) (see Problem 13).

In practice, we use the fact that whenever we have regularity of con-
vergence, we can take three successive terms of a sequence and ‘‘extrapolate’
to the limit. The manner in which Aitken’s A%-method speeds convergence is
given by the following theorem, which also explains more precisely what we
mean by ‘‘regular convergence.’’
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Theorem 4.5
Let {1,}7_, and {t,}7_, be as in Eq. (4.2) where lim, .. 7, = 1*. Further assume
for all n that &, = t, — t* satisfies &, ,, = (B + B,)e, where g, # 0, |B| < 1 and
lim, .. B, = 0. Thefi, for n sufficiently large, 7, is well defined and the new
sequence converges to ¢* faster than the old sequence in the sense that

Proof. Observe that e,,, = (B + By+1&u+1 = (B + Bus) (B + Buey. There-
fore
A%, = Epis — 28,41 T 85
=B + B+ )B + Be, — 2B + Be, + &,
= [(B — 1)* + Bilen
where

BY’D = B(Bn ol Bll+l) - 2Bn + Ban+1-

Moreover, lim, .. B, = 0 since 8, — 0 as n — «. Thus for n sufficiently large,
A%, # 0; and 1] is well defined. Now setting

AS,, = &n+1 T En

and
A28n = E&py2 T 28}1+1 + Eps
we have
' * Aln i A81
ty — 17 = Il = i (Azt) =ty — * (A281)
Ly B 1A
~"’;\ i [(B = 1)Z + Br’t]sn '
Therefore =4
s g = _B-1P+28.B-1D+B _
lim \ —= = lim, {1 B — 1° + 8, = b .
Corollary

Let g(I) C I = [a, b] and g'(x) be continuous on I where 0 < lg®|=L<H
Then Theorem 4.5 may be applied to the fixed-point sequence, {x,}; -, t0 speed
its convergence.

Proof. In Theorem 4.5, identify {t,}7_, with {x,};-, and r* with s, the fixed
point of g(x). As noted previously, if x, # s, thene, =1, — F=x,—s=e,%0;
and the theorem applies. v 8
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PROBLEMS, SECTION 4.3.2

1. Verify that s = 1 is a fixed point of g(x) = (x> — 4x + 7)/4. Using Problem 11, Section
4.3.1, show that the fixed-point iteration will converge to s for any x, satisfying ¢ <
Xo < 4 — & where 0 < g < 1. What is the rate of convergence?

2. If x;4, = g(xy) is a fixed-point iteration converging linearly to s, then ¢;., = g'(s)e;,

i=0,1, ... Forthe iteration in Problem 1, print the values ¢; and the ratios ¢; . ,/e;
fori=0,1,...,10; use x, = 3.7 and x, = .1 as starting values.

3. Code Aitken’s A%-method for the iteration in Problem 1; use x, = 3.7 and x, = .1 as
starting values. Print the estimates x;, x/ and the ratio of the errors (x; — s)/(x; — s)
fori=0,1,...,10.

4. Consider the fixed-point problem x = g(x) where g(x) = 5 — 6x'. Verify that s = 2
and s = 3 are fixed points of g(x). Using Problem 5, Section 4.3.1, show that the
fixed point iteration will converge to s = 3 for any x, in (3, »). Repeat Problems 2
and 3 for this function g(x); choose x, = 5, x, = 10, and x, = 1000.

. Let g(x) = x* — 2x + 2. What are the fixed points of g(x)? For each fixed point s,
determine whether there is an & > 0 such that if [x, — s| < &, then the sequence
Xi+1 = g(x;) is convergent to s. What is the order of convergence of the iteration at
those fixed points for which convergence occurs?

. Let {t.}x-1 = {(1/2)"};-, and {r,};-, = {1/n%}7_,. Using Theorem 4.5, determine
whether Aitken’s A*-method can be applied to either of these sequences.

. Repeat Problem 6 for the sequence {z,};;—, if

a)I:2”2+n_3
" n>+ 6
b) £, =1— () }

. The “‘geometric’’ series X r* converges for any value r in (—1, 1), and the series
k=0

converges to the value 1/(1 — r).

a) Prove this statement by showing that if S, = 1 + r + r> + -+ + " then S, =
(1 —r"tH/(1 — r). [Hint: Show that (1 — (1 +r+r2 4+ - -+ r) =1 — prt1]

b) Complete the proof by calculating lim S,

. Use Problem 8 and Theorem 4.5 to conclude that Aitken’s A%-method can be applied
to the sequence of partial sums {S,} of the geometric series. For r = .7, calculate S,,
S, . .., Sy and print these values. Next, apply the routine from Problem 3 to this
sequence and note the improvement.

. For 0 < x < 1, the function f(x) = 1/(1 — \/x) can be represented by a geometric
series if we set r = \/x. Repeat Problem 9 for this series representation for f(x): use
x = .3.

. Using Problem 10, determine how you might estimate the integral

.64 l
———d¥,
fm 1 — \/;

. In formula (4.1) assume that x, # s, g'(s) = 0, and that g"”(x) is continuous and
nonzero on /. Show that ¢, # 0 for all n = 1.
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13. Suppose that {x,} is a sequence and x;; — s = B(x; — s) and %45 — 5§ = B(X;+1 — 8)
for some i. Under the assumption that B # 1, solve these two equations for s, and
thus give an intuitive derivation for Aitken’s A*-method.

14. Consider the sequence {3} generated by the power method as in formula (3.12).
Use (3.12) to show that

limBkH - N

Ly =r, |r| < 1.

Thus the sequence {3,} satisfies the conditions of Theorem 4.5, and can be acceler-
ated by Aitken’s method.

15. (Steffensen’s method). Consider the fixed-point problem, x = g(x), with an initial
guess x, = 1, and solution s = g(s). Let x; = g(xy) and x, = g(x;) = g(g(x,)). Now
apply the Aitken formula (4.2) to obtain

B 2 I o (Axy)* — i, & — %)
L0 Aty O xy — 2% X

Now repeat the process; that is, let xj = 7, x{ = g(t,), x3 = g(x{) = g2(g(t)),and 1, =
t, — (g(ty) — t,)*/[g(g(t)) — 2g(t,) + t,]. Thus we see we are generating a sequence
{t,} where each 1, is obtained by three steps of a fixed-point iteration and then an
Aitken’s method correction. We formalize this procedure by defining R(x) =
2(g(x)) — 2g(x) + x; let G(x) = x — (g(x) — x)*/R(x) if R(x) # 0; and let G(x) = x if
R(x) = 0. Thus with #, given, the sequence {t,} is generated by the fixed-point
formula: .., = G(t), k = 0.
a) Let g(x) = ¥/6 + x and x, = , = 3. Write a program that generates both the
fixed-point sequence x,,,; = g(x;) and the Steffensen sequence #,,, = G(ty).
Compare the rates of convergence. [Obviously s = 2 satisfies s = g(s).]

*h) Assume that an arbitrary g(x) satisfies g’(s) # 1 and g"(x) is continuous: Prove
that G'(s) = 0, and thus Steffensen’s method is quadratically convergent by (4.1)
and (4.1b).

4.3.3. Newton’s Method

We are now ready to apply the fixed-point analysis above to our principal
problem of finding the zeros of a given function f(x). One natural choice of the
fixed-point function would be g(x) = x + ¢f(x) where ¢ is a nonzero constant.
Then f(s) = 0 if and only if s = g(s). From Section 4.3.2, we see that the
fixed-point iteration is accelerated by making as many derivatives of g(x) at x =
s equal to zero as possible. Now, g'(s) = 1 + ¢f"(s); thus g'(s) # O unless ¢ =
—(1/f'(s)). Unfortunately since we do not know the value of s, it is impossible
to make an a priori choice for c.

Thus we are led to make a different choice for g(x). This time we let g(x) =
x + h(x)f(x), and try to select i(x) such that g'(s) = 0. Now, g'(s) =1+ h'(s)f(s)
+ h(s)f"(s) = 1 + h(s)f'(s). Thus for g'(s) = 0, we must select h(x) such that A(s)
= —(1/f'(s)). Immediately we see that h(x) = —(1/f"(x)) has this property, and
furthermore we need not know the value of s to make this choice. Therefore,
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we select g(x) = x — f(x)/f"(x), and the fixed-point algorithm yields the follow-
ing iteration, known as Newton’s method. Given the function f(x), let x, be an
initial guess for s where f(s) = 0. Then let

Xn+1 = Xn _f(xn)/f,(-xn)a n = 0, 1, PN (43)

The analysis above along with Theorem 4.4 yields the following local con-
vergence theorem for Newton’s method. (The proof is left to the reader.)
[ 4 Lah= B¢ 4y HAAT
Theorem 4.6 g (O J &
Let /" (x) be continuous and f’(x) # 0 in some open interval containing s where
f(s) = 0. Then there exists an &€ > 0 such that Newton’s method is quadratically
convergent whenever |x, — s| < &.

Subroutine NEWTON (Fig. 4.7) employs Newton’s method to find an
approximate root of the equation f(x) = 0. Programming a root-finding proce-
dure that does not possess the bracketing property of the bisection method or
Regula Falsi presents one difficulty: selecting an appropriate test for terminat-
ing the iteration. When it is not practical to use a guaranteed error bound, such
as that displayed in Theorem 4.3, we are left with the alternatives of prescribing
either a tolerance £ > 0 or a tolerance & > 0, and stopping the iteration when
|Xu+1 — x,| < & or when |f(x,)| < &. Subroutine NEWTON uses both of these
criteria and an upper bound on the number of iterations to be executed as well.

SUBROUT INE NEWTON(XOyXTERM, FTERM,N, ITERM)

THIS SUBROUTINE USES NEWTON'S METHOD TO FIND A ROOT OF F(X)=0. THE
CALLING PROGRAM MUST SUPPLY AN INITIAL GUESS, XO, AND 3 TERMINATION
CRITERIA, XTERM, FTERM AND N. THE SUBROUTINE RETURNS AN APPROXIMATE
ROOT IN XO WHEN ONE OF THE TERMINATION REQUIREMENTS IS MET. A FLAG,
ITERM, IS SET TO 1 WHEN THE ABSOLUTE VALUE OF F(X0) IS LESS THAN
FTERM; ITERM IS SET TD 2 WHEN 2 SUCESSIVE ITERATES DIFFER BY LESS
THAN XTERM AND ITERM IS SET TO 3 WHEN THE MAXIMUM NUMBER OF
ITERATIONS, Ny IS REACHED. TWD FUNCTION SUBPROGRAMS NAMED F(X)

AND FPRIM(X) MUST BE SUPPLIED TO CALCULATE F(X) AND THE DERIVATIVE
OF F(X).

OO0 OGO

DO 1 I=1,N
FO=F(X0)
IF(ABS(FO).LT.FTERM) GD T0O 2
FPO=FPRIM(XO0)
CORREC=FO/FPO
IF(ABS(CORREC) «LT.XTERM) GO TO 3
1 X0=X0-CORREC
ITERM=3
RETURN
2 ITERM=1
RETURN
3 ITERM=2
X0=X0-CORREC
RETURN
END

Figure 4.7 Subroutine NEWTON.
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EXAMPLE 4.2. Let f(x) be the simple function of Example 4.1, f(x) = cos(x) — x.
Starting with x, = 0, the following sequence of iterates was generated by Subroutine
NEWTON. (See Table 4.2.) For this example, convergence is quite rapid.

<

TABLE 4.2 Newton’s method.

X; f(xi)
0.0000000E 00 0.1000000E 01
0.1000000E 01 —0.4596977E 00
0.7503638E 00 —0.1892304E — 01
0.7391128E 00 —0.4643201E — 04
0.7390850E 00 0.5960464E — 07

We note that although quite simple, the geometric derivation illustrated in
Figure 4.4 says nothing about quadratic convergence, sufficient conditions on
f(x) to ensure convergence, and the question of convergence when f'(s) = 0.
Recall that we say the root s has multiplicity p if f(s) = f'(s) = -+ = f®~V(s) =
0, but f(s) # 0. We shall consider the case in which s has multiplicity 2, that
is, s is a double root of f(x), and consider higher multiplicities in the problems.

Let us assume that f(s) = f'(s) = 0 and f®(x) is continuous. Again let g(x)
= x — fOIf'(); so g@x) = 1 — (f'&P — ff'W))f'(x)?, or g'(x) =
FOO (X)) f'(x)2. We easily verify by I'Hopital’s rule that g'(s) = 1/2. Since
|g'(s)| < 1, and the rest of the hypotheses of Theorem 4.4 are satisfied, we see
that Newton’s method still converges locally to s. The convergence, however,
is not quadratic. Instead we get only linear convergence where lim, ..
(en+1len) = g'(s) = 1/2.

In the analysis above, however, if we choose g(x) = x — 2f(x)/f'(x), then
2'(s) = 0. Thus if we know a priori that the multiplicity of s is 2, then the
sequence

Xn+1 = Xa — 2f(xn)/f’(xn)

will converge to s quadratically for x, sufficiently close to s.

In general, if s has multiplicity p, then we can show (Problem 9) that if g(x)
=x — f(0)/f'(x), then g'(s) = 1 — 1/p; and if g(x) = x — pf(x)/f"(x), then g’(s) =
0. Thus for x, sufficiently close to s, the sequence

Xn+1 = Xp — pf(-xn)/f,(xn) (44)

is quadratically convergent to s. The formula (4.4) is of little practical use,
however, since we rarely know the multiplicity of a root in advance.

EXAMPLE 4.3. In this example we illustrate the behavior of Newton’s method near a
point s where f(s) = f'(s) = 0. For f(x) = x* + x? — 5x + 3, we have f(x) = (x — 1(x + 3)
so that (1) = f'(1) = 0 and f(—3) = 0. Newton’s method was run with an initial guess of
v, = 4. Convergence to s = 1 is seen to be quite slow. As the iterates near 1, they exhibit
an oscillatory behavior that is typical when the limits of machine accuracy are ap-
proached. The same program was run with an initial guess of x, = —6, with rapid



4.3 Fixed-point methods 163

convergence to s = —3. (See Table 4.3.) The same program run in double precision with
x, = 4 yields results (Table 4.4) that are in agreement with geometric intuition (see
Problem 9. of this section).

TABLE 4.3.

X; Flxd) X; J&xs)
0.4000000E 01 0.6300000E 02 —0.6000000E 01 —0.1470000E 03
0.2764706E 01 0.1795237E 02 —0.4384615E 01 —0.4014566E 02
0.1999479E 01 0.4994273E 01 —0.3470246E 01 —0.9396978E 01
0.1545152E 01 0.1350779E 01 —0.3081737E 01 —0.1361792E 01
0.1287998E 01 0.3556594E 00 —0.3003147E 01 —0.5043125E—-01
0.1148676E 01 0.9170532E - 01 —0.3000004E 01 —0.7629394E — 04
0.1075647E 01 0.2332305E —01 —0.3000000E 01 0.0000000E 00

0.1038170E 01 0.5883216E — 02
0.1019176E 01 0.1478195E — 02
0.1009609E 01 0.3700256E — 03
0.1004812E 01 0.9250640E — 04
0.1002412E 01 0.2384185E — 04
0.1001178E 01 0.5722045E — 05
0.1000572E 01 0.1907348E — 05
0.1000155E 01 0.9536743E — 06
0.9993886E 00 0.1907348E — 05
0.9997784E 00 0.9536743E — 06
0.1000315E 01 0.9536743E — 06
0.9999380E 00 0.0000000E 00

TABLE 4.4
X f(xi)

0.40000000D 01 0.63000000D 02
0.27647059D 01 0.17952371D 02
0.19994794D 01 0.49942757D 01
0.15451534D 01 0.13507843D 01
0.12879985D 01 0.35566004D 00
0.11486779D 01 0.91707018D —01
0.10756476D 01 0.23323111D-01
0.10381716D 01 0.58838948D — 02
0.10191756D 01 0.14778606D — 02
0.10096106D 01 0.37034232D—03
0.10048111D 01 0.92696274D — 04
0.10024070D 01 0.23187972D — 04
0.10012038D 01 0.57987349D — 05
0.10006020D 01 0.14499018D — 05
0.10003010D 01 0.36250271D— 06
0.10001505D 01 0.90629086D — 07
0.10000753D 01 0.22657698D — 07
0.10000376D 01 0.56644780D — 08
0.10000188D 01 0.14161259D — 08
0.10000094D 01 0.35403258D —09




