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To obtain A,, we notice that P(—1) = 0; and since T,.(—1) = (—1)*, we find
Ag= A — Ay + A+ -+ (—D"A 4. (6.51b)

This technique is valid for all x in [—1, 1]; and moreover P(x) can be
efficiently evaluated at any x by (6.45¢). If x = 1 and p(x) in (6.50) is given by
either the interpolating polynomials (6.45a) or (6.45b), then P(1) is an inter-
polatory quadrature for I(f) = [, f(x) dx. Thus, (6.51) can be written in the
form Q,(f) = 2}, A;f(z;). Although this form is not computationally efficient,
it can be shown in either case that the weights are positive; so the convergence
result of Theorem 6.1 is applicable. Formulas of this type are called
Clenshaw-Curtis quadratures.

Finally, we remark that we seem to have placed a great deal of emphasis on
Chebyshev-type approximations in these sections. However, both from a
theoretical background and from practical experience, Chebyshev methods
have proven to yield excellent procedures in terms of truncation errors and
round-off propagation.

EXAMPLE 6.12. As an illustration of some of these ideas, let f(x) = sin(x)/x for —1 <
x = 1. First, using (6.45b), we construct the interpolating polynomial for f(x) with n = 4.
Since f(x) is an even function on [—1, 1] and T,(x) is odd when k is odd, we see that vy,
and vy, in (6.45b) are zero. For even k, since f(x) and T,(x) are even, we have (by
symmetry between ¢, and ¢, and between ¢, and t,)

2 . .
Ye = Z [f(1) T (1) + 2f(t)Ti(ty) + f(t)Ti(t,)].

Now T,(t,) = 1 for k =0, 2, 4; T,(¢,) has the value 1 for k = 0, 0 for k = 2, and — 1 for k =
4; T,(t,) has the value 1 for k = 0, —1 for k = 2, and 1 for &k = 4. Thus with f(0) = 1,

Yo = % S + 2f <COS %) + f(0) | = 1.839461
y2 = 3L = fO)] = 0079265

A -
o = % fy - 2f <cos %) + £(0) | = 0.002010.

Thus p(x) = 0.919731 — 0.079265T,(x) + 0.0010057,(x) where the rapid decrease of the
coefficients is typical of a well-behaved function f(x).
To demonstrate Clenshaw-Curtis quadrature, we derive a polynomial P(x) that

approximates .
Si(x) = f st g,
0 t

Writing the interpolating polynomial P(x) above in the form of (6.50), we have b, =
0.919731, b, = 0, b, = —0.079265, by, = 0, and b, = 0.001005. Thus from (6.51a) and
(6.51b), we obtain A; = 0.000101, A, = 0, A, = —0.013378, A, = 0, A; = 0.959364, and
Ay = 0.946087. Thus

P(x) = 0.946087 + 0.959364T,(x) — 0.01337875(x) + 0.00010175(x)
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is an approximation for [, (sin(7)/1) dt. Since sin(#)/t is even, we have

0 i
f %(t)d,zf 00 g4 = siq.
- 0

Thus P(0) = 0.946807 is an estimate to Si(1) = 0.946083. Moreover, we can use P(x) to
provide an estimate Si(x), 0 < x < I, by observing (again since the integrand is even) that

—1+x 3 1 1
f smt(t) &= f L‘:(’_)d, = Si(l) — Si(1 — x).
= 11—

Therefore tor 0 < x < 1, we have the approximation

Si(l — x) = P(0) — P(—=1 + x),

which is an easily computed and accurate approximation. For example, with x =
0.5, 8i(0.5) = 0.493107 and P(0) — P(—0.5) = 0.493060, which is in error by 0.000047.

PROBLEMS, SECTION 6.5.3. .

il ’\1 ‘Using the result of Theorem 6.4, find the weights and the nodes of the two- and
three-point Gauss-Legendre quadrature formulas. Find the weights by undeter-
mined coefficients. [The second- and third-degree monic Legendre polynomials are
respectively Py(x) = x* — (1/3) and Py(x) = x? — (3/5)x. The weights can be verified

by checking precision in (6.34).]

2. Use the three-point Gauss-Legendre formula of Problem 1 and the five-point for-
mula given in Example 6.10 to estimate
a) [l sinBx)dx  b) [fln(x) dx  ¢) 2 e dx.

3. Write a computer program to generate the nth Legendre polynomial from the three-
term recurrence relation and find the zeros by Newton’s method. Next, use (6.36) to
find the Gauss-Legendre quadrature weights. Check your results for various values
of n against tabulated formulas.

4. Let ¢(x) = (1/28~ )T\ (x) denote the monic Chebyshev polynomial of the first kind.
Verify that g,(x) = xgy_ ,(x) — brqi—_»(x), k =2 where b, = 1/2 and b, = 1/4, k = 3.

5./ Use (6.40a) and (6.40b) to bound the error made in estimating the integral in Prob-
lem 2(a) by the three-point Gauss-Legendre formula [that is, n = 2 in (6.40a) and
(6.40b)]. Use (6.40b) and an appropriate Jackson theorem to bound the error for
five-point Gauss-Legendre formula applied to the integral in 2(a).

6. Show that no matter how the nodes and weights of a quadrature formula

Qn(./‘) = 2 Ajf.(xj)
i=o
are chosen, the formula cannot have precision greater than 21 + 1. [Hint: Assume
that Q,(f) is designed to approximate [% f(x)w(x) dx. Use Theorem 6.4 and find a
polynomial p(x) € ®,,,, for which Q,(p) # [% p(x)w(x) dx.]



