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6.1 INTRODUCTION

In Chapter 5 we developed numerous ways for efficiently approximating a
function, f(x) € C[a, b]. If g(x) is any approximation whatsoever to f(x), and
we wish to approximate either the integral or the derivative of f(x), then our
first inclination is to use either the integral or the derivative of g(x), respec-
tively, as our approximation. In the case of approximating derivatives, we have
already pointed out that the derivative of the interpolatory cubic spline is fairly
reliable whereas the derivative of the nth degree interpolating polynomial usu-
ally is not because of its oscillatory behavior. One other fairly reliable means of
derivative approximation is to use the derivative of the discrete least-squares
approximation of Section 5.3.1. [This method is especially reliable when the
values of f(x) are given in tabular form since this approximation tends to
“smooth™ the data when the degree of the approximation is fairly small.] In
general, however, it remains true that numerical differentiation is a particularly
unstable process and quite difficult to analyze carefully. We shall present in
detail only one more numerical-differentiation method (based on Richardson
extrapolation—Section 6.4). The rest of this chapter will be primarily devoted
to numerical integration procedures.

6.2 INTERPOLATORY NUMERICAL
INTEGRATION

For any function f(x) that is integrable on the interval [a, b], we define

b
1) =] fwk) de” 6.1)

a

where w(x) is a fixed nonnegative weight function as defined in (5.1a) or 5:1b)-
[Often we shall be using w(x) = 1, but we shall see some important cases later
where we shall desire more flexibility in choosing w(x).] Any formula that
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290 Numerical integration and differentiation

approximates /(f) is called a numerical integration or quadrature formula. As
mentioned above, if g(x) approximates f(x) on [a, b], then we expect I(g) =
I(f). For example if g(x) is a cubic interpolating spline, then it is usually true
that /(g) approximates I(f) quite well. However, because of the complex for-
mula for the cubic spline we shall not pursue this point further here. We shall
instead concentrate on the use of interpolating polynomials, and we shall find
that they yield quite favorable results and lead to efficient, yet simple formulas.
Formulas of this type are called interpolatory quadratures.

Interpolatory quadratures all have one standard form. From (5.4), the in-
terpolating polynomial in @, at the points {x;}/_, can be written as

Palx) = i J(x;)€5(x);

i=0

and we define Q,(f) = I(p,) as the quadrature formula to approximate /(f).
Thus

b/ n
(S e e ds

=0

b
0.(f) = I(p») = f palrhw(e) dio = f

a

= 3 ) [ cwow ax = 3 ases) (6.2)

where

l

b
Aj f €i(xw(x) dx, O=j=n.
The values {A;}/_, are called the weights of the quadrature and the points {x;}’_,
are called the nodes. Thus an interpolatory quadrature formula,

0.1 =3 Afx),

i=0

is nothing more than a weighted sum of the function values f(x,), f(xy), . . . ,

. f(x,). The weights, A;, are computed once and for all and depend only on the

nodes x,, X;, . . . , Xp, the weight function w(x), and the interval [a, b]. That is,

the same weights are used no matter what function f(x) appears in the integral

bw(x) f(x) dx that we are trying to estimate. This simple form makes inter-
polatory quadrature formulas easy both to use and to analyze.

We note again that if f(x) is a polynomial of degree » or less [that is, f(x) €

®,], then f(x) = p,(x) by Theorem 5.3 [ f(x) is its own interpolating polyno-

mial]. Hence for any f(x) € ®,, O,(f) = I(f); and so the quadrature of (6.2)
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gives the exact value for the integral. If for some integer m, Q,(f) = I(f) for all
f(x) € ®@,, then we say that the quadrature has precision m. From our remarks
above, we see that any (n + 1)-point interpolatory quadrature, 0,(f), always
has precision at least n. Later we shall develop quadratures with precision
strictly greater than n.

Since from (6.2) it has precision n, Q,( ) must give the exact values of the
integrals of 1, x, x?, . . ., x". This fact gives us an alternative way to determine
the quadrature weights, {A;}/_,, once the nodes, {x;}’_,, are given and fixed.
This procedure is similar to the method of undetermined coefficients in that we
have a linear system of (n + 1) equations in (n + 1) unknowns (the weights). To
be specific, for fi(x) = x*, 0 = k = n, we get the (n + 1) equations

b n
I(fi) = f Xw(x) dx = Q,(fi) =Y Ak, 0=<k=n. (6.3)

=0

In (6.3) the nodes, {x;}’_,, were fixed beforehand and the weights are deter-
mined by solving the linear system. If, however, we treat the nodes, as well as
the weights, as unknowns, then we have 2(n + 1) unknowns. Considering Eq.
(6.3) we might reason, as Gauss did in 1814, that it could be possible to let k
range from 0 to 2z + 1 so that (6.3) represents a system (nonlinear this time) of
(2n + 2) equations in (2n + 2) unknowns. If (6.3) has a solution, it will yield a
quadrature of precision (2n + 1). This procedure is indeed possible and we will
study Gaussian quadrature in Section 6.5. For now we will be content to illus-
trate the construction of a quadrature with the following simple example.

EXAMPLE 6.1. Let [a, b] = [—h, h] be the interval of integration where / is a
positive constant, and let w(x) = 1. We shall derive two simple quadrature formulas: the
first by direct integration of the interpolating polynomial, and the second by undeter-
mined coefficients as in (6.3).

1. Let x, = —h and x, = h; then the first-degree interpolating polynomial is

(h + x)
2h

P = - L9 4 p

Therefore

h

OF) = Kpy) = f B o

—h

_EfEHh — 5

" ) b+ 02|
2h 2

28 *2 |,

—h

So, Q\(f) = hf(=h) + hf(h), which is the familiar trapezoidal rule estimate for
f’ih .f(.\') dx~
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2. Letx, = —h, x; = 0and x, = h. By forcing the quadrature formula Q,(f) = A,f(x,) +
A f(x;) + A,f(x,) to equal [*, f(x) dx for f(x) = 1, x, x2, we obtain this system:

h
I(1)=f Lde =2h =A)+ A+ A,

—h

Il
|

h
I{x) = f xdx =0 = —Ah + Ash

—h

h 2h3
I(x?) = f x> dx = 3= Ah? + Ah?.
—h

Solving these equations yields

Ay = A, = [31_ and A= 4—h
Thus

Q) = TLA-h) + 47(0) + fn),

which is the well-known Simpson’s rule for estimating [*, f(x) dx. Note in this case
that 1(x®) = 0 = Q,(x?) but /(x*) # Q,(x*). Thus, Simpson’s rule has precision 3 and
integrates all cubic polynomials exactly. For small values of /, these formulas often
provide quite good estimates. For example, for 4 = 0.2 and f(x) = cos(x), we have

I1(f) = 0.397339, O,(f) = 0.397342, Q,(f) = 0.392027;
and for f(x) = e¢” and h = 0.2, we obtain

I(f) = 0402672,  Q,(f) = 0.402676,  Q,(f) = 0.408027.

It is natural at this point to ask if the interpolatory quadratures of formula
(6.2) will converge to [2 w(x)f(x) dx as we increase the number of interpolating
points, that is, as n — . The following theorem provides a condition for which
this result is true.

Theorem 6.1
For any positive integer n and any f € Cla, b], let Q,(f) = Zi_, A f(x{") be
the interpolatory quadrature given by (6.2). If there exists a constant K > 0
such that Z7_, |A /”| = K for all n, then lim, _, ., Q,(f) = I(f) for all f€ Cl[a, b].

Proof. By the Weierstrass theorem, for any £ > 0 there exists a polynomial
gylx) € ®y (where N depends on &) such that

mai(h ‘f(x) . q‘v(-’()l = Hf_ qA\'Hx = s.

a=r=

it el el
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We note, since the quadrature formula is interpolatory, that Q,(gy) = 1 (qv)
when n = N. Choosing n = N and letting T4 w(x) dx = ¢, we obtain

(1) = QD] = [I(f) = I(qy) + Qulay) — 0.(N)|
= [I(f) = 1) + |Qu(gy) — Qu(/)].

Now,

b
() = Iay)| = ] f W) — gu()] dx

b
= |F ~ CINHacf w(x) dx =< ce

a

and

E A fPlgylxf™) — Fx™)]

i=0

‘Qn(ql\) - Qn(f)| .

. n
== ad- ¥ 147 = Ke.
i=0

Thus, for any € > 0, there is an integer N such that \ECFy — 0.(f)| = (K + o)
whenever n = N. Therefore, lim, .. Q,(f) = I(f) for every fin Cla,b]. m

It can also be shown that the converse of this theorem is true. That is, if
lim, ... Q,(f) = I(f) for each f € C[a, b] [where 0,(f) is an interpolatory
quadrature], then there must be a number K such that 3»_, |A™| < K for all n.
However, it goes beyond the scope of this text to prove the converse. Theorem
6.1 (and its converse) do have some practical applications in terms of selecting
quadrature formulas. We note first that any interpolatory formula has the prop-
erty that Q,(1) = [} w(x) dx since the constant polynomial 1 is integrated
exactly. Since w(x) is a nonnegative weight function, we must have

O<I(1)=j

a

b n
w) dx = Q,(1) = 3 A,
i=0

Therefore, if the weights A" are all positive for 0 < j < nfh wx) dx =31,
|A ™|. If for each n we can choose the nodes % 22 L . 5 3 go that the
corresponding weights A{”, A, . . ., A" are positive, then the hypotheses of
Theorem 6.1 are satisfied and convergence is guaranteed. A further advantage
of positive-weight quadrature formulas is that they have good rounding-error
properties. For example, if Q\(f) = =), A;f(x;), we can usually expect that the
round-off error for the evaluation of the Sf(x;)’s will be on the high side approxi-
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mately as often as on the low side. Thus, if the A;’s are all positive, the errors to
the high side will tend to cancel the errors to the low side when forming the
sum, Q,(f). Furthermore, the expected value of the total rounding error will be
minimized if the A;’s are nearly equal. (We shall see two examples of equal
weight formulas when we investigate the composite trapezoidal rule and
Gauss-Chebyshev quadrature.)

6.2.1. Transforming Quadrature
Formulas to Other Intervals

Frequently we have a quadrature formula, Q,(g) = 2/_, A;g(t;), that is derived
for a specific interval, say [—1, 1], and is designed to approximate [, g(¢) dt. If
the problem is to estimate [? f(x) dx, we can use the results of Section 5.2.4 to
transform the formula from [—1, 1] to [a, b]. To be specific, suppose Q,(g) is a

given quadrature formula for [—1, 1] and suppose f(x) is defined on [a, b]. With
the change of variable x = ar + 8 where a = (b — a)/2 and B = (a + b)/2, we
have

b 1
f(x) dx = f flat + B)a dt.

a

Letting g(1) = af(at + B), we find Q,(g) = =/, aA,f(at; + B) as an approxima-
tion to [, g(¢) dt. Thus we can define the corresponding transformed quadra-
ture formula, Q3 (f), for the interval [a, b] by

i N n . b e n .
Qi) = Y AFfl) = 75> Aflx)

i=0 i=0 (64)
» b —aq a+ b

7 T3

X;

We leave as a problem for the reader to show that if O, has precision mon[—1,
1], then Q3 has precision m on [a, b].

6.2.2. Newton-Cotes Formulas

Given [ f(x) dx to approximate, probably the most natural choice of nodes x; to
use in a quadrature formula are nodes that are equally spaced in [a, b]. Let h =
(b — a)/nandlet x; = x, + ih where x, = a. An interpolatory quadrature formula
0.(f) = Z/_, A;f(x;) constructed using these equally spaced nodes is called a
closed Newton-Cotes formula. The interpolatory quadrature formula con-
structed using the equally spaced nodes y; =a +ih,i=1,2,. ... n+ 1;h=
(b — a)/(n + 2) is called an open Newton-Cotes formula. (The closed formula
uses the end-points a and b; the open formula has ¢ < y,, and y,,, < b.)



6.2 Interpolatory numerical integration 295

From Example 6.1 with &1 = 1, we see that

Q.(f) = =1 + f)
Q.(f) = 3LA=1) + 4£0) + f(1)]

are the two- and three-point closed Newton-Cotes rules for [—1, 1]. Using the
results of Section 6.2.1 on these formulas, we have for an arbitrary interval
[a, b], that

1) =22 1) + s11)) 6.5

s(h =L@ [f(a) v ar(45L) + f(b)J (6.6)

are respectively the closed two-point and the three-point Newton-Cotes for-
mulas. [Formula (6.5) is the trapezoidal rule for [a, b] and (6.6) is Simpson’s
rule for [a, b].] As two more examples of Newton-Cotes formulas, we have the
three-point open formula for [—1, 1] and the four-point closed formula for
[—1, 1] (see Problem 9): ¢

fﬂ Sx) dx = % [2‘/' <_%> ~0) + 2f G)]

L ) s s % [f‘(—n + 3f <—%> +3F G) +f(l)].

Note in the three-point open formula above that not all the weights are
positive. In fact, it is known for n = 10 that the weights of any Newton-Cotes
formula are of mixed sign. As we noted, this is a bad feature in terms of
rounding error. Moreover, as n increases, the weights themselves grow without
bound: thus there are continuous functions for which the quadratures do not
converge to the integral. For these reasons, higher order Newton-Cotes for-
mulas are rarely used in practice. However, lower order Newton-Cotes for-
mulas such as the trapezoidal rule and Simpson’s rule are extremely useful, and
the time invested in analyzing their properties in the next section will be well
spent.

We now give one further type of quadrature that involves derivative evalu-
ations of f(x) as well as values of f(x) itself. The cubic polynomial, p,(x), which
satisfies py(a) = f(a), pi(a) = f'(a), ps(b) = f(b), and pi(b) = f'(b) is given by
formula (5.37); and we can approximate I( f) by O4(f) = I(ps). We could labori-
ously compute I(p;) = [% p4(x) dx by direct integration, but we can simplify this
task by noting, since Simpson’s rule has precision 3, that S(ps) = I(p;). From
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Eq. (5.37) we can easily verify that p;(a) = f(a), ps((a + b)/2) = 1/2(f(a) + f(b))
+ ((b — a)/8)(f'(a) — f'(b)), and p4(b) = f(b). Then, using Eq. (6.6), we have

C=D 1 fay + fon + LS @) - o,

Q:;(f) = S(p;y) =

or

3f) = () + L= @) - ). 6.7)

Because of the presence of T(f) in this formula, Q,(f) is called the corrected
trapezoidal rule and is often denoted by CT(f) = Q,(f). By the uniqueness of
the Hermite interpolating polynomial in Theorem 5.7, if f(x) is any polynomial
of degree 3 or less, then f(x) = py(x); and so I(f) = CT(f). We can easily check
that I(x*) # CT(x*), and therefore CT(f) has precision 3.

EXAMPLE 6.2. Given [1, cos(x) dx to estimate, we find for f(x) = cos(x) that
I(f) = 1.683
T(f) = 1.081
CT(f) = T(f) + 0.561 = 1.642.

This example indicates that when derivative data are readily available, the corrected
trapezoidal rule may be expected to provide better answers. The theoretical analysis in
the next section bears this out.

PROBLEMS, SECTION 6.2.2

1. By integrating the Lagrange basis functions as in (6.2), derive an interpolatory
quadrature formula of the form

2h
f Fdx = Aof©) + A f(h).
0

2. Use the method of undetermined coefficients to derive an interpolatory quadrature
formula 'S
3h

f)dx = Ay f(0) + A, f(h) + Ax f3h).

0

3. Use each of (6.5), (6.6), and (6.7) to estimate the integrals and compare your results
/with the exact result.

1 2 -3
a) L Xtdx b) f] ¢n(x)dx el J; e xdx
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/j Determine the precision of the formulas for [, f(x)dx: use the results of Problem 8.
a) 302f(=3) — O + 2f(3)] b {LA-D + 3(=3) + 37 @) + A
*5. Apply each of the formulas in Problem 4 to the integrals in Problem 3: use (6.4) to
translate the formulas to the proper interval.
6. Interpolatory numerical differentiation formulas can be constructed using tech-

niques similar to (6.2) and (6.3). If p,(x) interpolates f(x) at x,, Xis - -« 5 X, and
if « is some point, then f'(a) = p,(a). Furthermore, using the Lagrange form for
Pa(%), D) = é() A;f(x;)) where A; = ¢/(a). Derive a numerical differentiation
formula of the form

f@) = Ayfla = h) + Aif(@) + Ayf(a + h),

and test the formula on f(x) = cos(x) with &« = 2 and & = .05.
7. Use undetermined coefficients, as in (6.3), to derive a differentiation formula of the
form
fl@) = Aofla — 2h) + A f(e — h) + Axf(@).

[That is, choose Ay, A,, A, so that the approximation above is exact for f(x) = 1. (%)
= x, and f(x) = x*.] Test your formuld on f(x) = cos(x), f(x) = e*, and f(x) = Vx
with @ = 1 and h = .05.

- j;) Suppose Q,(f) = E“ A;f(x;)). Show that Q,(f+ g = Q.(f) + Q.(g). Next,
i suppose that Q,(f) = [4w(x) f(x)dx for the functions 1, x, . . . , x™. Use the fact that
~ Qu(f + 2 = 0.(f) + 0.(g) to show that Q, has precision at least m.

9./ Using (6.3), construct the open Newton-Cotes formula for [, f(x) dx with nodes
L 1/2, 0, 1/2 and the closed Newton-Cotes formula with nodes —1, —1/3, 1/3, 1.

10. Construct the interpolatory quadrature for [1, f(x) dx with nodes —1, —1/2, 1/2, 1.

11. Prove that the quadrature formula Qj given in (6.4) has precision m on [a, b]
whenever Q, has precision m on [—1, 1]. [Hint: If f(x) is a polynomial in x of degree
m or less, what is g(1)?]

12. In Example 6.1 derive Q,(f) by undetermined coefficients and Q,(f) by integration
of the interpolating polynomial.

13. Suppose that [¢ g(1)dt is approximated by the quadrature Q(g) = 2 Ai_g(ti). Find

the corresponding quadrature Q(f) = E B;f(x;) to approximate [%f(x)dx. [Hint:

~ Letx=mt+,8wherex=awhent=candx=bwhent=d.]

v { 14.) a) Let p(x) = bylx — 1)2(x + 1) + by(x — D)(x + 1)2 + y(x — 1)* + bo(x + 1)%. For a
N given f(x) find by, b,, b,, and b, such that p(—1) = f(—1), p(1) = f(1), p'(—=1) =
f'(=1), and p'(1) = f'(1).
b)" Show that p(x) in part (a) is unique in @,. [Hint: Let g(x) in @, satisfy g(=1) =
f(x1) and ¢'(=1) = f'(%1), and consider s(x) = p(x) — g(x).]
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c) Let Q(f) = JL p(x)dx and express Q(f) in the form B,f(—1) + B,f(l) +
By f'(=1) + By f'(1).
d) Transform Q(f) in part (¢) to approximate [%f(x)dx and obtain the corrected
trapezoidal rule (6.7).
e) Use part (b) and Exercise 11 to argue that the precision of Q is at least 3.
15. a) With Oy(f) as in (6.7) show that Qy(af + Bg) = aQs(f) + BOs(g), @ and B
constants, f'and g functions.
b) Show that O,(x*) # [2xidx. If g(x) = ax* + azx® + a,x® + a,x + a, with a, # 0,
show that Q,(q) # [Lq(x)dx.
16. For the interpolatory quadrature formula (6.2), show that at least one of the weights
is positive. [Hint: Consider /(1).]

6.2.3. Errors of Quadrature Formulas

In this section, we consider ways of estimating the quadrature error I(f) —
0.,(f) and derive specific estimates for the important cases of the trapezoidal
rule, Simpson’s rule, and the corrected trapezoidal rule. By formula (5.27), the
error of regular polynomial interpolation for f(x) € C"*![a, b] is given by

k5 S

€n(-x) Ef(_x) i pn(—x) = (n + 1)!

We can therefore express the error of interpolatory quadrature as

b
o= f el (o

or

b bf("+1)({.:)

e, Ef fx)wx) dx — f 1 Pa()w(x) dx =f o ¥ 1) W(x)w(x) dx. (6.8a)

Recalling that f@*+ (&) is actually an unknown function of x, we see that the
right-hand integral in (6.8a) cannot usually be evaluated explicitly. We can,
however, obtain a computable bound on the error, ¢,, from (6.8a) by using

L)

b
< max |7 o) f o D1 WO dx. (6.8b)

2
‘ll

We will use an error bound similar to this in a later section, but for now we
consider two other ways of simplifying (6.8a). Recall that a simple form of the
Second Mean-Value Theorem for integrals states that if g(x) and /(x) are con-
tinuous and if g(x) does not change sign in the interval (a, b), then there exists a
mean value point, n € (a, b), such that [ g(x)h(x) dx = h(n) [% g(x) dx. We can
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use this theorem immediately in (6.5) and (6.7). For (6.5), (6.8a) gives the error
for the trapezoidal rule:

b
10 =T =e =5 [ O - a - b d.

Now [(x — a)(x — b)] is of constant sign on (a, b); so the mean-value theorem
above yields

" b 1
e’ =f_2(7’) f" & — a)x — b} dx = _f_l(z”fl_) (B — a). (6.9)

Since (6.7) was the result of Hermite interpolation, we must use (5.39) instead
of (5.27) to obtain the error. From (5.39), where p3(x) is given as in (6.7), we
have
il 15
]

S — ps(x) = . (v~ @ = b

Now [(x — a@)*(x — b)?] > 0 for x € (a, b); so the mean-value theorem yields

1) - ey = e = | LD (¢ ape - by de

a

or

iv b (v
eor = £26) f = apc =y =10 g —ap. (610

The error for Simpson’s rule is a bit more difficult to analyze since in (6.8a)
the function W(x) changes sign in (a, b). First, let x, = a, x, = (a + b)/2, and
X, = b. We can get at the error in Simpson’s rule by defining an auxiliary cubic
polynomial, p,(x), such that P3(x0) = flxg), ps(xy) = f(xy), ps(xy) = Sf(x;), and
p3(x;)) = f'(x,) (wWe leave as Problem 7 to show that such a polynomial exists).
Next, note that S(f) = S(p,) since p,(x) interpolates f(x) at x,, x,, and x,.
Further, since Simpson’s rule has precision 3, S(ps) = I(p;). Therefore we
obtain an alternative expression for the error:

1(f) = S = I() = Sps) = I(f) = 1(py).

In order to use this expression, we need an error formula for J(x) = ps(x). This
formula is easily obtained, as below, using a methodosimi]ar to that in the proof
of Theorem 5.5.

For a fixed x, different from x,, x,, and x,, define &(1) for t € [a, b] by

= Xollt — 2t — X5)
— X)(x = x)x — xp)”

$0) = L) = pu(0] = [/6) = py(0) &
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Then ¢(7) has at least 4 zeros in [a, b]; namely, x,, x;, X,, and x. By Rolle’s
theorem, ¢'(¢) has at least 3 zeros in (a, b) that are between the 4 zeros of ¢ (7).
By construction, we see also that ¢'(x;) = 0, and therefore ¢'(r) has at least 4
distinct zeros in (a, b). If f € C4[a, b], we find (as in the proof of Theorem 5.5)
that there is a point ¢ in (a, b) (which depends on x) such that ¢“(¢) = 0.
Therefore

£

& = 2 — %)% — x5).

S = psx) =

Since the function [(x — xy)(x — x;)*(x — x,)] does not change sign on (a, b), we
can now use the Second Mean-Value Theorem to deduce

luv—um)affmghx—mmx—mﬂx—A»m,

a

or

IU)SU)f(m & — %) — X2 — x) dx.  (6.11a)

a

We can obviously evaluate the integral above directly to obtain the error. To
illustrate another idea, however, we use a standard trick to evaluate

b
f (x = xo)(x — x)*(x — xy) dx

by choosing f(x) = (x — x;)*. From (6.11a), we have
b
If) = S = (= xlx — x*(x — xp) dx

since the fourth derivative of f(x) = (x — x,)* is the constant 4!. Letting h =
b — a)2 = x; — x5 = X, — x4, we find

2 (=m0 | %2 2
(x — x)* dx = ——~ =
Jtr() ! 5 P} 5
and
24 2h®
S((x = x)) = [t + b = -

Thus for f(x) = (x — x,)%,

—4h®

b
x = B} — 2)%x — &) dx = I(F) — 8(f) = s
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Using this equation in (6.11a) with ¢$ = I(f) — S(f), we have

— £ (iv) o 5
5 = fgo(") (b 5 “> . (6.11b)

EXAMPLE 6.3. The sine-integral, Si(x), is defined by

mn=f§¥2m.
0

To illustrate the error analysis of this section, we estimate Si(1) by the trapezoidal rule,
Simpson’s rule, and the corrected trapezoidal rule. In order to use the error bounds
derived above on the estimates for Si(1), we need in (6.9) to bound | ()| form € [0, 1];
and in (6.10) and (6.11b) we need to bound | f92()| for n € [0, 1].
To obtain these bounds, we use the expansion
f3 15 t7

sin()) =1 — 37 5~ g

to obtain for f(r) = (sin(¢)/1)
1 2 I r I 2

M =l-syt 54~ 7.
SOPINL BN § o
Fo=-—3+3s37—74a+
1 1 #*

f(n)([): _7_’+

|
)

Since all these series are alternating series, we see that [£7)| = 1/3 and | f@ ()| < 1/5
for » € [0, 1]. Hence, the error bounds are eT| = 1/36 = 0.027778, eCT| = 1/3600 =
0.000278, and |e'“'| = 1/14400 = 0.000069. From a table, we obtain Si(1) = 0.946083.
Noting that f(0) = 1 and f'(0) = 0, we have

T(f) = 0.920735; e = 0.025348
CT(f) = 0.945832; et = 0.000251
S(f) = 0.946146; €S = —0.000063.

6.2.4. Composite Rules for Numerical
Integration

If we wish to derive a highly accurate quadrature formula for the interval [a, b],
we immediately see two obvious choices.

1. Take the number of nodes, (n + 1), to be large’so that the quadrature,
Qn(f) = Z A.if(-xj)7
i=0

is the integral of a high-degree interpolating polynomial.



