176 Solution of nonlinear equations

Letting g, _ (x) = yox"~' + yx"~2 + --- + y,_,, substituting into Eq. (4.21),
and equating like powers of x, we easily see (Problem 3) that

P 1) = Bpa®Y 4 B =2 + soi - byq

where {h;}'= are given by the synthetic division algorithm. Thus this algorithm
generates the coefficients of ¢, _,(x) as well as p(«). By the same reasoning as
above, the algorithm can be repeated and will yield ¢, (o) and the coefficients
of g, _»(x) (of degree n — 2) where

qn—l(x) o (X - a)Qr172(x) + Fys ¥ = 61n~1(05)- (422)
Substituting (4.22) into (4.21), we obtain
p() = (x = a)’qu—2(x) + rilx — a) + r,. (4.23)
Differentiating (4.23), we see that p’(a) = ¢, _ (@) = r;. Obviously this proce-
dure may be continued, using synthetic division on each successive g,(x), k =
A—2,0— 3,...,0tyield
P =rfx —a)' + rpy(x — a4 nx —a) + . (429

Equating (4.24) with the unique Taylor’s expansion (4.18), we finally obtain our
desired result,

Im = P('")(Ol)/fH!. 0=m=n.
EXAMPLE 4.6. Letp(x) = x® + 5x® + 4x* + 3x® + 2x> + x + l and let « = 2. We
illustrate synthetic division in Table 4.6 and find p“’(a)/j! forj =0, 1, . . . , 6. The entries

in any row are the coefficients for ¢ ;(x), with the last entry in the row being p“?(c)/j!.
Thus, p'(2) = 765, p"(2)/2! = 756, etc. In this illustration, we see, for example, that

p(x) = (x — 2)(x® + 7x* + 18x% + 39x% + 80x + 161) + 323
and
plx) = — 2)% + 17(x — 2)* + 114(x — 2)* + 395(x — 2)?
+ 756(x — 2)% + 765(x — 2) + 323.

TABLE 4.6
px) 1 5 4 3 2 1 1
q5(x) 1 7 18 39 80 161 323
q4(x) 1 9 36 111 302 765
q5(x) 1 11 58 227 756
q>(x) 1 13 84 395
q,(x) 1 15 114
qo(x) 1 17

1

It is obvious how Newton’s method should utilize synthetic division. In
each iteration, let x,, = « and generate p(x,) = r, and p'(x,,) = r, in exact

4.4 Zeros of polynomials 177

analogy to the procedure in Example 4.6. Then proceed by setting x,,,; = x,, —
p(x)lp'(x,). There are many other methods (such as the secant method) that
involve evaluation of p(x) or its derivatives at specific points, and synthetic
division can be utilized by these methods as well. Once again we emphasize
that the initial guess of Newton’s method, x,, should be ‘‘close’’ to r, a zero of
p(x), in order to ensure convergence. Section 4.4.3 will consider the problem of
the approximate location of the zeros of p(x), and will be of immense aid in
making a good choice for x,.

If our goal is to find all the zeros of an nth degree polynomial, p(x), then it
seems reasonable first to find one zero, say r,, of p(x). We can next say that
p(x) = (x — ry)p,(x), and hence any zero of the (n — 1)st degree polynomial p,(x)
is a zero of p(x). We now search for a zero of p1(x), say r,, write p,(x) =
(x = ry)py(x), and then search for a zero of p,(x), etc. This process of finding a
zero and dividing it out is called deflation. Polynomial deflation must be used
Judiciously, for large errors can result from our inability to find roots exactly.
Subroutine POLRT, listed in Fig. 4.9, uses Newton’s method and deflation to
find all the real roots of a polynomial p(x). Synthetic division is used for
evaluation and for finding the coefficients of the deflated polynomials. An
initial guess of x, = 0 is used for Newtqn’s method at each stage of the defla-
tion. Note that subroutine POLRT cannot determine complex roots, but mod-
ifications are easily made that enable the subroutine to find complex roots (see
Problem 1).

EXAMPLE 4.7. Subroutine POLRT was used to find the zeros of p(x) = x° + x* —
9x% — x* + 20x — 12 where p(x) = (x — 2)(x + 2)(x + 3)(x — 1)%. A tolerance TOL =
0.00001 was used in this example. The program found the following estimates to the
roots, listed in the order found: {

0.9998991E 01
0.2000000E 01
0.1000101E 01
—0.2000031E 01
—0.2999979E 01.

To illustrate the effect of not having these roots precisely, we listed the coefficients of
the deflated polynomial of degree 4, found after the first root was divided out. These
coefficients were

0.1000000E 01 (coefficient of x*)

0.1999899E 01 (coefficient of x?)
—0.7000303E 01 (coefficient of x?)
—0.7999597E 01 (coefficient of*x)

0.1200121E 02 (constant term).

These coefficients indicate that the deflated polynomial does not have precisely the
remaining zeros of p(x) as its zeros. For example, the constant term, 12.00121, is the
product of the roots of the deflated polynomial whereas the product of 2, —2, —3,and 1
15 12

178

o000 o000 OO0 O0O0

[aEaEal

(aNaNgl

Solution of nonlinear equations

SUBROUTINE POLRT(A,RO0T,TOL,N,MTOL,NROOT)
DIMENSION A(21),B8(21),C(21),R0O0T(20)

SUBROUTINE POLRT USES NEWTON'S METHOD AND DEFLATION TO FIND THE
REAL ROOTS OF A POLYNDMIAL. THE CALLING PROGRAM MUST SUPPLY THE
DEGREE OF THE POLYNOMIAL, N, THE COEFFICIENTS A{I) (WHERE A(I) IS
THE COEFFICIENT OF X%*{N+1-I1)), A TOLERANCE TOL, AND AN INTEGER
MTOL. THE SUBROUTINE RETURNS AN INTEGER NROOT=NUMBER OF REAL ROOTS
FOUND AND THE RUOTS (IN AN ARRAY ROOT). AT EACH STAGE OF THE
DEFLATION, NEWTON'S METHOD TERMINATES WHEN MTOL ITERATIONS HAVE
BEEN EXECUTED QR WHEN TWO SUCCESSIVE ITERATES ARE LESS THAN TOL

IN ABSOLUTE VALUE. N MUST BE GREATER THAN 2.

NROOT=0

NP1=N+1
1 ITR=0

X=0.

SYNTHETIC DIVISION ALGORITHM TO EVALUATE POLYNOMIAL AND ITS
DERIVITIVE _
2 B(1)=A(1)
C(1)=8B(1)
DO 3 1=2,N
B(I)=X*B(I-1)+A(1)
3 COI=X*C(I-1)+B(1)
BINPL)=X*B(N)+A(NPL)

NEWTON'S METHOD UPDATE TO OLD ESTIMATE OFf ROOT

XCORR=B(NPL)/C(N)

X=X-XCORR
IF(ABS(XCORR).LT.TOL) GO TO 4
ITR=1ITR+1
IF(ITR.LT.MTOL) GO TD 2
~, RETURN

4 NROOT=NROOT+1
ROOT(NROOT) =X

SET UP COEFFICIENTS OF DEFLATED POLYNOMIAL

NP1=N

N=N-1

DO 5 I=1,NP1
5 A(I)=B(I)

USE QUADRATIC FORMULA WHEN DEFLATED POLYNOMIAL HAS DEGREE 2

IFIN.GT.2) GO T0 1
DISCRM=A(2)*A(2)—-4.*A(1)*A(3)
IF(DISCRM.GE.0O.) GO TO 6
RETURN

6 ROOT(NROOT+L)=(-A(2)+SQRT(DISCRM))/2.
ROOT(NROOT+2)=(-A(2)-SQRT(DISCRM))/ 2.
NROOT=NROOT+2
RETURN
END

Figure 4.9 Subroutine POLRT.

4.4 Zeros of polynomials 179

To analyze the effects of not knowing r, exactly as in Example 4.7, suppose
the Newton iterates {x,};_, are converging to a zero, r;, of p(x). No matter how
large n may be, we can expect that x, # r,. Thus we must settle for some x, =
r'y as an approximation for r,. (In Section 4.4.3 we will say more about when to
terminate an iteration.) By Theorem 4.9, there is a polynomial p,(x) of degree
n — 1 such that p(x) = (x — r))p,(x) + p(r}). Even if we had no round-off error in
computing the coefficients of p,(x), p(r;) is probably not.zero. Thus the zeros of
pi(x) are not, in general, exactly the same as the remaining zeros, {r;}i—,, of
p(x). As a matter of fact, it can happen that even though r; is extremely close to
ri, the zeros of p,(x) can be quite different from {r;}/_,. If this phenomenon
occurs, p(x) is said, as before, to be ill-conditioned (once again we refer to
Wilkinson’s example of ill-conditioning given in Section 3.3.2). Therefore the
most practical strategy to find r, is to use the Newton iteration on p,(x) until it
seems to be converging to some approximate zero, ry, of p,(x). Then we let x, =
ry', and use Newton’s iteration on the original polynomial p(x) to generate a
corrected approximation, rj, for the actual zero, r,. This correction process
should be repeated for all of the other approximates as well. This correction
strategy is useful in any root-finding method that finds roots one by one.

When deflation is employed, the error (caused both by rounding errors and
by truncation of the Newton iteration) incurred by accepting r; as an approxi-
mation to r; not only influences the approximation r; = r, but also influences
the approximation r; = r; and all successive approximations. Furthermore, the
error incurred in generating r; also influences r; = r, and all successive approx-
imations. We can also see that the smaller roots (in magnitude) are more sensi-
tive to error than the larger ones. For example, let r, and r, be two roots of p (x)
with |ry| < |r,|, and assume that r{ and r; can be found such that |r, — r{| = & and
|r, — r3| = &. Then the relative errors (which are of more practical importance
than the absolute errors) satisfy

lr=r] . |a—n

] 72|

Thus we see that the accumulation of error with respect to the deflation process
has less effect on our approximations if we are able to approximate the smaller
roots first. Once again this approximation requires some a priori knowledge of
the approximate location of the roots, which is the subject of Section 4.4.3.
However, an intuitive approach to finding the smallest zero first would be to
select the initial guess quite close to 0.

EXAMPLE 4.8. To illustrate some of the effects of deflation, the polynomial p (x) =
x* —4x3 + 6x? — 4x + | was run using subroutine POLRT with TOL = 0.00001. [In this
case, p(x) = (x — 1)*.] After 19 iterations, Newton’s method provided r; = 1.021412 as
one root. The program deflated p(x) using r{ as an assumed root, and after 23 iterations
provided ry’ = 0.9776155 as a second root. The next deflated polynomial was x*> —
2.000972x + 1.001454, which is seen to have no real zeros (in fact, the zeros of this

180 Solution of nonlinear equations

quadratic are approximately 1.000486 = 0.021949/). Newton’s method applied to this
quadratic gave a sequence of iterates that exhibiteda characteristic oscillatory behavior.
The first 20 iterates are shown in Table 4.7.

TABLE 4.7
X; Sfx)

0.0000000E 00 0.1001454E 01
0.5004840E 00 0.2504845E 00
0.7509677E 00 0.6274182E — 01
0.8766937E 00 0.1580685E —01
0.9405380E 00 0.4076481E — 02
0.9745383E 00 0.1156807E —02
0.9968296E 00 0.4968643E — 03
0.1064779E 01 0.4615963E — 02
0.1028881E 01 0.1289368E — 02
0.1006177E 01 0.5149841E — 03
0.9609319E 00 0.2047658E — 02
0.9868165E 00 0.6704330E — 03
0.1011340E 01 0.6008148E —03
0.9836637E 00 0.7667542E —03
0.1006454E 01 0.5187988E — 03
0.9629857E 00 0.1888931E —02
0.9881714E 00 0.6341934E —03
0.1013921E 01 0.6637573E —03
0.9892181E 00 0.6103516E—03
0.1016302E 01 0.7333755E-03

PROBLEMS, SECTION 4.4.1

1. A number of modifications of subroutine POLRT are possible and desirable. Either
modify this program, or write your own root-finding program that incorporates two
obvious improvements.

a) Use the root-refinement idea; take each zero of a deflated polynomial and use it
as an initial guess for Newton’s method applied to the original polynomial p (x).
This technique will refine both the root and the deflated polynomial.

If after a number of iterations, Newton’s method does not appear to be converg-
ing, it is possible that p(x) has a complex zero. Include a provision to start the
iteration with a complex initial guess, (say x, = i), when this situation happens.
The program will need a capability to perform complex arithmetic if a complex
initial guess is used.

Test your program with p(x) = (x — 1)* and with p(x) = x® — 2x° + 5x* — 6x3 + 2x% +
8x — 8 (which has zeros 1 + i, 1 — i, 1, —1, 2i, —2i).

b

-

4.4 Zeros of polynomials 181

2. Let p(x) be given by (4.12) and assume that none of its coefficients is zero. Show
that evaluation of p («) by direct substitution requires at least 2n — 1 multiplications.
 3. Establish that the number, b,, generated by the synthetic division algorithm satis-
' fies b, = pl(a). [Hint: In (4.16), let p(x) = P(x) and Q(x) = (x — «). Let the
coefficients of Q(x) be by, by, . . ., b,_, and equate like powers on both sides of
(4.16).]
4. Start with Eq. (4.23) and show that r, = p"(a)/2 where r, is obtained in the same
manner as r, and r,.
5. Let p(x) = x5 + 5x® + 4x* + 3x3 + 2x2 + x + 1. Utilize synthetic division to find
{yi}¥—o, and write p(x) in the form

P(x) = vo(x + 2)° + yi(x + 2)° + yylx + 2)* + yu(x + 2)°
+ yalx + 22 + iz + 2) + ¥,.

What does this value of y,; along with the last entry in the first row of Table 4.6 tell
you?

4.4.2. Bairstow’s Method

The basic purpose of Bairstow’s method is to find a quadratic factor of a
polynomial, p(x). Let p(x) be given by (4.12) and let « and v be any two real
numbers. Then p(x) can be written in the form

p(x) = (x* = ux — v)q(x) + by_1(x — u) + b, (4.23)
q(x) = byx""% + bx" =3 & oo Ak by_gk + by_s. (4.26)

We first note that b, = a, and the degree of ¢(x) is n — 2. We also emphasize
that each b, is actually a function of « and v that we could find explicitly, should
we desire (see Problem 1). Obviously for n very large, the explicit calculation of
each b, in terms of u and v could become quite cumbersome. Fortunately
however, we can derive an algorithm that calculates each b, quite efficiently.
Let p(x) be given by (4.12), let « and v be arbitrary real numbers, and let

b_, = b_, = 0. Then generate {h,}}._, by
by = ap + uby_, + vby_,, 0<k=n. 4.27)
We leave to the reader (Problem 2) to verify that the {b,}}._, given by (4.27)
satisfy (4.26) and (4.25). [This is merely a problem of comparing like powers of

x in (4.25).] Before we lose sight of our principal problem of finding zeros of
p(x), we state the following theorem.

Theorem 4.10

Let u, v, and p(x) be given as above, and let r(x) = X2 — ux — v = (x = isy)
(x = s,). Then s, and s, are zeros of p(x) if and only if p(x) = r(x)g(x). [We see
that finding a quadratic factor r(x) of p (x) is equivalent to finding « and v so that
bnfl = bn = O]

