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Newton’s method is very useful in problems in which f’(x) is easily evalu-
ated. [Such is the case where f(x) is a polynomial as we shall see in Section 4.4.]
We shall illustrate here a case of particular importance. Suppose we are given a
constant ¢ > 0 andewish to find the real, positive kth root of c. We then let
f(x) = x¥ — ¢, and the Newton iteration becomes

xk—¢ (k= Dx, + clxf™?

X1 = Xn T PR . . 4.9

EXAMPLE 4.4. In order to approximate V2, let f(x) = x> —2and x, = 1. Formula
(4.5) reduces in this case to x,; = (x, + 2/x,)/2. Then to eight significant digits, x; =
1.5000000, x, = 1.4166667, x; = 1.4142156, and x, = 1.4142135. In fact, \/2 = 1.4142136
(to eight places).

For practical computational purposes, some modifications of Newton’s
method are desirable. These modifications are based on the observation that
although Newton’s method converges rapidly for a starting value near a simple
root of f(x) = 0, the method may diverge rapidly (or exhibit other erratic
behavior) in the presence of a zero of f'(x) or for a starting value somewhat
removed from the root. In order to account for this fact in a general root-finding
program, we might include a test of whether | f(x,+1)| < | f(x,)] at each step
(such a test would determine whether it is profitable to continue the iteration
using Newton’s method). A somewhat more comprehensive program might
include a combination of bisection and Newton’s method. For example, sup-
pose f(a)f(h) <0and m = (a + b)/2. If f(m) f(b) < 0, then there is a zero of f(x)
in (m, b). If Newton’s method starting with x, = b (or x, = a) does not produce
an estimate x, in (m, b), then x, can be rejected and several steps of the
bisection method can be executed before Newton’s method is tried again.
Similar modifications may also be made to other ““fast’” procedures, such as the
secant method, which do not possess the root-bracketing property of bisection.

PROBLEMS, SECTION 4.3.3

1. Apply Newton’s method to f(x) = ¥® — 2x® + 2x — 1; use x, = 0 and x, = 10.
Terminate the iteration if | f(x,)|= 107° or |xp41 — Xq| = 107% 0r n = 25. Print each
iterate x, and f(x,). The rootis s = 1:50 e, = X, — 1. For each n, also print ¢, and ¢},
and verify that e, = €.

2. In Problem 8 it is shown that the errors in Newton’s method satisfy e, ., = Kej
where K = £"'(s)/2f"(s) [under the assumption that f(s) = 0 and f"(s) # 0]. For f(x) in
Problem 1, verify that K = 1.

3. Repeat Problem 1 for f(x) = x* — 4x* + 6x2 — 4x + 1; this time, print x,, f(x,), €,
and .75 e, (s = 1 is aroot). Note that ¢, ., = .75 e,. By Problem 9, ¢, ,, = Ke, when
s is a root of multiplicity p where p =2and K =1 — 1/p. Verify that s = 1is aroot of
multiplicity 4.

4. To see that the estimates from Newton’s method may have to be monitored, con-
sider f(x) = sin 15x — .5 sin 14x. By Problem 6, Section 4.2, f(x) has zeros in [k /15,
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(k + Dmr/15] for 1 = k = 13. Try to find each of these 13 zeros: use x, = kmw/15, 1 =k
=< 13, and the termination criteria in Problem 1. Observe that many of the zeros
found are not in the desired range.

. Design a subroutine that incorporates bisection and Newton’s method. The input

should include an interval where f(x) changes sign and should use two bisections
when a Newton iterate strays outside the current interval. Test your program on the

~functions in Problems 1 and 4.
. Use Theorem 4.4 and formula (4.1) to prove Theorem 4.6, with the additional

assumption that f"’(x) is continuous.

/ Prove that the tangent line to the graph of y = f(x) at the point (x,, f(x,)) intersects

the x-axis when x = x,, — f(x,)/f"(x,).

. Theorem 4.6 can be proved without the assumption about /"’(x) in Problem 6. First,

Theorem 4.4 implies there is an & > 0 such that {x;} = s whenever |x, — s|< &
(why?). Now, given that {¢,} — 0, show that

limfetl = g

n—w €y
where K = f"(s)/2f"(s). [Hint: Consider x, . ; — s = x, — s — f(x,)/f'(x,), and use the
expansion f(s) = f(x,) + f'(x)(s — x,) + f"®,)(s — x,)*/2! where 0, is between x,
and s.]
Assume that f(s) = f'(s) =--- = f®~V(s) = 0, fP(x) is continuous, and f*”(s) # 0.

Let g(x) = x — f(x)/f"(x), and show that g'(s) = 1 — 1/p. [Hint: Let 7 = x — s, and

10.

expand both f(x), and f’(x) in a Taylor’s expansion around s. Then let 1/ — 0.]

To illustrate the necessity of x, being ‘‘sufficiently close’ to s for the convergence
of the Newton iteration, we define

sin x, =2 = x =72
=5 L & &/l
_1’ X = —7T/2.
oy = JCOS X, —w2=x=m|2
Then f'(x) = {0’ otherwise.

Let £, 0 < r* < /2, satisfy tan r* = 2¢*. (Since tan w/4 = 1 < /2 = 2(7/4) and
o = tan /2 > m = 2(m/2), we know that such a r* exists and w/4 < r* < 7/2.)

a) Assume that x, = r*; then evaluate the rest of the Newton method iterates. Are
they converging to s = 0? Are they diverging?

b) What happens to the Newton method iterates if r* < x, < 7/2?

¢) What happens to the Newton method iterates if 0 < x, < r*?

.“‘ Suppose f(x) = (x — r)(x — ry) -+ (x — r,) where r; < r, <---<r, Thatis, f(x)is an

nth degree polynomial with n distinct real roots and with leading coefficient equal to
1. By a geometric argument, convince yourself that if x, > r,, then the sequence {x;}
generated by Newton’s method satisfies

By L oo & Xpqg Xy & 5 Xy fori=1;2 454 s

Prove this mathematically, using Rolle’s Theorem to observe that f”(x) > 0 for x =
Fn.
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12./ As an extreme case of a function for which Newton’s method is slowly convergent,
/' consider f(x) = (x — )" for n some positive integer and « some real number. Show
that Newton’s method generates the sequence

- Xip1 =1 — 1/n)x; + a/n,

and then show that x;,, — a = (1 — 1/n)(x; — «). This is a special case of Problem 9
above.

4.3.4. The Secant Method

In general Newton’s method converges much faster than the bracketing
methods, but it has serious disadvantages such as how close x, must be to s
before convergence and the need to evaluate f’(x,), for each n. This derivative
evaluation can be quite a cumbersome task. The secant method is, in a way, a
compromise between Newton’s method and the bracketing methods. The rate
of convergence of the secant method is stronger than linear (called superlinear),
but not quadratic. This fact, plus the fact that it does not require derivative
evaluations, makes it a very attractive, practical method.

The secant method iteration comes directly from the Newton iteration by
simply replacing f'(x,) by the difference quotient (f(x,) — f(x,—))/(x, — X,_1).
Note that when x, and x,_, are ““close,”” then this difference quotient is an
approximation to f"(x,). The secant method is represented by the following
algorithm.

Given f(x) such that f(s) = 0, let x_, and x, be initial guesses for s. Then for
n=0, .

_ .f(-xrt) (X,, — Xp— 1) - f(xn)xn =1 f.(xn = l)xn (4 6)
f(xn) il f(xn - 1) f(xu) . f(xn — 1) ' '

This algorithm should remind the reader of the Regula Falsi method. In fact if
x_; = a and x, = b bracket s, then x, is generated by exactly the same formula
that generates the first iterate of Regula Falsi. (See Problem 1.) However, x,

Xn+1 = Xp

Figure 4.8 Secant method.
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will not (in general) be the second iterate of Regula Falsi since x, and x, will not
necessarily bracket the root. This point is illustrated in Fig. 4.8, which has the
same object function as Fig. 4.1. We further note that since x, ., depends
explicitly on x,_, and x,, the secant method is not a fixed-point iteration
although directly derived from the Newton iteration, which is. The secant
method does have the property, similar to the fixed-point iteration, that if
x,_, # s but x, = s, then x,,, = 5. For the secant iteration to be well defined, |
we must assume that f(x,) — f(x,-,) # 0. ]

EXAMPLE 4.5. The secant method was programmed in single precision for f(x) =
cos(x) — x with x, = 0 and x, = 1. Note from Eq. (4.6) that there are two mathematically
equivalent ways to generate the sequence P

Form 1 X010 =X = f) e — Bnn

f‘(Xu) - f‘(-\-n - 1) :

- N = f-((\‘,,).\’,l -1 .)“(.’C,, = l)x"
Form 2 Xn+1 ) —f—i)

Most numerical analysts feel that Form 1 is preferable to Form 2 and is less subject to
rounding error. This particular example was computed using Form 1. (See Table 4.5.)

TABLE 4.5
X; Sfxi)

0.0000000E 00 0.1000000E 01
0.1000000E 01 —0.4596977E 00
0.6850733E 00 0.8929920E — 01
0.7362989E 00 0.4660129E — 02
0.7391192E 00 —0.5722045E — 04
0.7390850E 00 0.5960464E — 07

To analyze the rate of convergence for the secant method, let us suppose
that f” (x) is continuous, s # x,—; # x,; and let us define ¢, = s — x, for all n.
Then after algebraic reduction,

. f(xn)f'n -1 — f(xn - l)en

(4 =8 — X = <
s g f(xn) - f(xn - 1)

f‘(xn)enfl . f(.X —l)en Xn—1 — Xn
= = en. L @7
Xp—1 = Xn Feed = fOom—v) @.7)
Now,

f(xn)enfl — f(xn—l)en = z f(xn)/en - f(-\rn—l)/()n—l

Xp—1 = Xn B0 Xn—1 = Xn
f(xu) = f(5) _ f(xnf 1) — f(g)
Xp — 8 Xp—1 — 8§
= Cp€n—1
Xn = Xn-1

= €n€n— l.f[xna 8, Xp— 1:"
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Let G(x) = (f(x) — f(s))/(x — s5); then by the mean-value theorem, f[x,, s, X, _]
= (G(xn) = G(x,,,l))/(x,, = xn—]) = Gl(zn)- Now

) = )& =) + f(s) = f0)

e — S)F

and
f(S) = f(.X) =+ f’(x)(s — X) + ﬂ%(é =, x)z

by Taylor’s Theorem and the continuity of /" (x). Putting these two equations
together, we get

o flow st =G'@) =13 @y

Thus from Eqgs. (4.7) and (4.8) and the mean-value theorem,

E’H b | = enen e l.f['x", s, 'XN — ]](/\‘)I —1 - 'xn)/(j‘(‘\‘ll) ol .f‘(x)l = 1))

= €p€n—1 <%> <f/_(§l )> (49)

where both 7, and ¢, lie in the smallest interval containing x,, _,, x,, and s. With
the aid of (4.9) we are able to prove the following local convergence theorem for
the secant method.

Theorem 4.7 :

Let f(s) = 0, f'(s) # 0; and let /" (x) be continuous in a neighborhood of s. Then
there exists an & > 0 such that if x_,, x, € I, = [s — &, s + &], then the secant
method converges to s.

Proof. In this proof, we will let M, denote an upper bound for |f"(x)/f"(x")|
where x and x’ are any points in [s — «, s + «]. Since f(x) and f'(x) are
continuous at s and since f'(s) # 0, we see, for 8 > 0 but sufficiently small, that
the inequality |f"'(x)/f"(x")| = Mp is valid for x and x" in [s — B, s + B]. Choose
e > 0 such that eM = K < 1 where £ < 8 so that M, = M;. Let |x_, — s| <&
and |x, — s| =< &; then |e;| = |e_,0|Mp = &M = eK < e. Also, |e;| =
leoes | Mg = |eo|(leo|Mp) < (eK)(eMp) < eK>.

Now with the induction hypotheses that ¢; < eKiand e;_, < eK' "' < ¢, we
can easily see that |e;,| < eK'! and that x;,, € [s — &, s + ¢] for all i.
Therefore lim; .. ¢; = 0, and we have convergence on /.. [The reader can easily
see that the inequality on ¢; ,, can be sharpened (see below), but this process
was not necessary for the proof of simple convergence.] u

It is beyond the scope of this text to establish rigorously the exact rate of
convergence of the secant method [for a thorough coverage, see Ostrowski
(1966)]. We can, however, present a convincing intuitive argument. Let My be
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given as in the proof above, and let d, = Mpge,. Then
dyyy = Mpe, o1 = e,_1e,M% = d,d, .
Let d = max{d_,, d,}; then
dy = d ydy = d%, dy = dyd, = d°, d; = dydy = d®;

and clearly by induction we see that d, = d** where o, ., = o, + @)1, g = 1,
a, = 2. Itis left (as Problem 3) for the reader to show that these integers, «,, are
given by

- ___3+\/§<1+\/§>"_3—\/§<1—\/§>"

! 245 2 5 2 '
which is the famous Fibonacci sequence with the so-called golden ratio,
o, = 1 = y/g
— )

The rate of convergence as shown in Ostrowski is superlinear; and under the
conditions of Theorem 4.7, lim, _, ., (e, +./e}*) exists and is usually not zero so
the order of convergence is r*. (Note: 1 < r* < 2.)

4.3.5. Newton’s Method in Two Variables

In this section, we will derive Newton’s method for solving a system of non-
linear equations, particularly the system of two equations in two unknowns:

flx,») =0
glx, y) = 0.

(4.10)

In (4.10), f(x, y) and g(x, y) are real-valued functions of two variables. We will
consider this problem in more detail in Section 4.5; we are content in this
section to present an intuitive derivation. As we shall see in Section 4.4.2,
Newton’s method for the special case of the system, (4.10), can be used to find
zeros of polynomials where the zeros may be either real or complex.

When solving (4.10), we are looking for a simultaneous solution, that is,
numbers s and ¢ such that

s, 0=10
g, )=20

In order to derive Newton’s method, let us suppose that we have approxima-
tions x, and y, to s and ¢, respectively. Expanding f(x, y) and g(x, y) in a
Taylor’s expansion (in two variables) about the point (x,, y,), we find

S, ¥) = f(xo, yo) + (%o, Y = x0) + fy(-\’m Yoy — yo) + Relx, y) 4.11a)
.1l1a
g(x, ¥) = g(xo, Yo) + 8x(x0, Yo)(x — Xo) + g,(x0, Yo) (¥ — ¥o) + Rylx, y)
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Ri(x,y) =

where f,(x,, y,) denotes the partial derivative of f(x, y) with respect to x evalu-

ated at the point (x,, y,), and where R,(x, y) is given by

[f:l‘.l'(a’ B)x — -"'0)2 + 2f:,,,,(a, B)(x — x)(y — yo) T .f:u.u(av IB)(V - .V())Z]
2

with the mean-value point, («, 3), being somewhere on the line segment joining
the points (x, y) and (x,, v,). If we substitute (s, ?) for (x, y) in (4.11a), we find
[since (s, 1) is a solution of (4.10)] that

0 = f(xo, yo) + fulxo, Yo) (s — Xo) + JuX0s Yo) & — yo) + Rs(s, 1)
0 = g(xo, ¥o) + 2x(x0, Y0) (8 — Xo) + g,(x9, Yo)(t — ¥o) + Ry(s, 1).

If we now suppose that the point (x,, v,) is close to (s, ), then the factors
(s — x0)%, (s — x0) (t — yo), and (¢ — y,)?, which appear in R,(s, 1) and R,(s, 1), are
small with respect to the first-order terms, (s — x,) and (t — y,). Thus, we
consider the linear system of equations, (4.11c), obtained by neglecting R ;(s, f)
and R,(s, 1):

0 = f(xg, yo) T fulxo, Yo) (s — Xo) + fy(xo, Yo) (£ — Yo)

0 = g(xg, yo) + g(x0, Yo) (s — Xxo) + gy(x0, Yo) (£ — ¥o).

(4.11b)

(4.11¢)

If we solve (4.11c¢) for s and ¢, the resulting approximation to the solution of
(4.10) should be better than (x,, y,). Note, however, that a solution of (4.11c)
will not be precisely the pair (s, 7) since Eq. (4.11c) is not the same as Eq.
(4.11b). If we let (x,, y,) denote the solution of (4.11c), then

Srlxos yo) (x1 — xo) + filxo, Yo) (¥1 — yo) = —f (X0, Yo)

(4.11d)
8(xg, Yo) (X1 — Xo) + gy(Xo, Yo) (31 — Yo) = —8(x0,5 Yo)-

It is convenient to write (4.11d) in matrix form as J,(x, — x,) = —F(x,) where

Xo Xy f(xo, Vn):l

X) = 5 X; = . F(xy) = | g o

’ |i.\’0j| ! [.‘71:| (o) l:g(-\’o» o) |’

5 [ Salxo, Yo)  fuXo5 Yo) :l
. g+(x0, Yo)  u(X05 Yo)

If ¢, = [}9] is the solution of Jox = —F(x,), then x, = X, + ¢, is an updated (or

corrected) estimate to (s, 7).

We note that (4.11c¢) is normally written in an equivalent form (obtained by
multiplying by Ji;): x;, = x, — J;'F(x,). Having the new estimate, x,, to the
solution, we repeat this correcting process, which leads to the iteration

X; 11 = x; — Ji'F(x;), i=0,1,.... (4.11e)

The algorithm described by (4.11e) is Newton’s method in several variables.
The matrix, J;, of partial derivatives evaluated at x; is called the Jacobian
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matrix and plays the role of a derivative (see Section 4.5). Thus the form of
Newton’s method displayed in (4.11e) is similar to Newton’s method for a
single function of one variable. This algorithm and variations of it are the basis
for Bairstow’s method (Section 4.4.2) and also can be effectively used in op-
timization problems (Appendix) and collocation methods for differential equa-
tions (Chapter 7) as well as in the problem of finding solutions to systems of
nonlinear equations.

PROBLEMS, SECTION 4.3.5

1. If x_;, = a and x, = b where f(a)f(h) < 0, verify that the first iteration of the secant
method is the same as for Regula Falsi.

2. Note that Eq. (4.9) can be rewritten as

()
7€) fh.58)

where « is the point where the line segment through (a, f(a)) and (b, f(b)) crosses
the x-axis. Thus (4.9) can be used for an analysis of Regula Falsi. Suppose x, and x,
are such that f(x,) > 0 > f(x,), and suppose f”'(x)f"(x) > 0 for x, = x =< x, (see Fig.
4.1). If x, x3, . . ., x,, . . . are the iterates of Regula Falsi, and if f(s) = 0, then

s—a=—(—as — b)

a) shows > x;fori=2,3,...;
b) let s — x; = ¢; and show (in the notation of Theorem 4.7) that e, , , = Mze,e,:

c) for e = Max{|eo|, |e,[}, show e;., = A& where A = eMj (see Section 2).

3. Consider the sequence, {a,};-,, such that @, ,;, = @, + @,_,, @y = 1, a; = 2. Find
the only two values of y (y, and v,) that satisfy y"+! = y" + y"~! for all integers n =
0. Verify that c;y} + cyy} = a, satisfies the equation a,, . ; = a,, + a,,_, for any two
values of ¢, and ¢,. Verify that for oy = land a; = 2, ¢, = 3 + V/5)/2\/5 and ¢, =
—(3 — 3/85){24/5.

4. Let f(x) = x> — 2 and [a, b] = [1, 3]. Compute the first four iterates of both the
secant method and Regula Falsi; note how they differ.

5. Program the secant method and test your program on the function f(x) = cos(x) — x.
6. Program Newton’s method for two variables and test your program on the system
Py —=9=0
x+y=1=40
(This sytem has two solutions where a solution represents the intersection of the
line and the circle described by the equations.)
7. Let p(x) = x* — x> — x — 2 and let u and v be any real numbers.
a) Verify that p(x) = (3 — ux — v)(x + u — 1) + fi(u, v)(x — u) + fy(u, v) where

fiu,vyi=w2 —u+v-—-1 and folu, v) = — 2 + 2uv — u — v — 2.
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Obviously, p(x) = (x* — u*x — v¥)(x + «* — 1) if and only if «#* and v* are
solutions of fi(u*, v¥) = 0 = fy(u*, v*) (see Section 4.4.2). Thus if we know u*
and v*, we can find two zeros of p(x) by merely applying the quadratic formula
to find the two zeros of x> — u*x — v*. Note that even if these two zeros are
complex, we n€ed not use any complex arithmetic in finding them.

b) Let x, = (uy, vo) = (0, 0), and apply Newton’s method for four iterations to find
approximations u, and v, for «* and v*, respectively. Apply the quadratic for-
mula to x* — u,x — v, = 0 to obtain approximations for two zeros of p(x). [The
true answers are (u*, v¥) = (—1, —1), and the resulting zeros are %(—] + \V/30).
This problem presents the basic idea of Bairstow’s method, which is presented in
Section 4.4.2.]

4.4 ZEROS OF POLYNOMIALS

In Section 4.3, it was noted that a disadvantage of Newton’s method was that
the derivative of the object function, f(x), had to be calculated at each iterate.
For many functions, the calculation of f'(x) is a formidable task. Such is not
true, however, if the function is an nth degree polynomial,

plx) = @gx® + @x™ ' F oo ¥ @y 1x ¥ aps a, # 0. (4.12)

Finding the zeros of an nth degree polynomial is one of the oldest and most
studied problems in mathematics, and is also one of the more important prob-
lems in applied mathematics and has extensive practical applications. For n =
1, the only zero of p(x) is given by r = —a,/a,. If n = 2, it is well known that the
zeros are given by the quadratic formula,

—di £ NG — ddsds (4.13)

2a,

r=

There are similar, but more cumbersome formulas for n = 3 and n = 4. What
makes the problem so difficult in general is that for n = 5 there is no algebraic
formula such as (4.13) that gives the zeros of p(x) in terms of the coefficients.
Thus we are forced to develop numerical procedures to approximate the zeros
of p(x). There are numerous such numerical procedures in the literature; but
because of space and time considerations, we shall concentrate on just three—
the Newton, Bairstow, and inverse power methods. (There is no reason, how-
ever, why the other methods we have discussed, such as the secant method,
cannot be used for polynomials.) We shall also limit ourselves to the case in
which all of the coefficients a; in (4.12) are real.

Before proceeding further, we shall develop some basic and well-known
theory about polynomials that is necessary for understanding and utilizing nu-
merical root-finding techniques. The most basic result, which we recall from
Chapter 1, is the Fundamental Theorem of Algebra.
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Theorem 4.8
Given p(x) as in (4.12) with n = 1, there exists at least one value r (possibly
complex) such that p(r) = 0.

Given an r, such that p(r,) = 0, it is then easily shown (Problem 1) that p(x)
can be written as p(x) = (x — r)g,(x) where ¢,(x) is an (n — 1)st degree
polynomial. Applying Theorem 4.8 to ¢(x), we obtain a value r, (not necessarily
distinct from r,) such that ¢,(r,) = 0. Thus there exists an (n — 2)nd degree
polynomial g,(x) such that ¢,(x) = (x — ry)g.(x); 0 p(x) = (x — r))(x — ry)gs(x).
Repeating this process, we finally arrive at n values ry, r,, . . ., r, such that
p(r;)) =0, 1 =i = n. Furthermore it can be shown that this set of roots is unique,
and so p(x) can be written as

plx) = ay(x — rdlx — ¥)“: < (x — Fy). (4.14)

This argument also shows that an nth degree polynomial can have no more than
n zeros. As noted above, the r;’s need not all be distinct. If any r; appears in
(4.14) exactly m times, r; is said to have “‘multiplicity m.” The reader may
easily verify that if r; is a root of a multiplicity m, then p(r) = p'(r)) =--- =
p"=P(r;) = 0 and p™(r;) # 0. Note that this statement agrees with our earlier
definition of “*multiplicity m’" for a zero of an arbitrary function.

The example, p(x) = x* + 1 = (x + D)(x — i), de;nonstrates that even though
the coefficients «; are real, the zeros {r;}/—, may be complex. It is well known
that complex zeros of a polynomial with real coefficients occur in conjugate
pairs. To be more precise, if »r = a + ib, b # 0, is a complex number, then r
(called the conjugate of r) is defined by ¥ = a — ib. If 7, and z, are two complex
numbers, then an elementary result is that 2, + 2, = Z; + Z, and 2,2, = 7,Z,. By

7
induction, it is easy toshow thatz, + z, + -~ + z,=2; + 22 + -+ 7, and (%)
= (F)*. Finally, for any real number a, we have a = a. Combining these
properties for a polynomial p(x) with real coefficients, we find that p(r) = p(F)

for any complex number r. Thus if p(r) = 0, then

p(H=0=0=p() = p(r), (4.15)

which shows that if r is a zero of p(x), then sois 7. If ris a complex zero of p(x)
of multiplicity m, then 7 is also a zero of p(x) of multiplicity m. This result
follows since p'”(x) is a polynomial with real coefficients fori=1,2, ... ,m —
1: and therefore if p’(r) = 0, then p’(¥) = 0. Note that this equation implies
that if n is odd, p(x) must have at least one real zero. The last fundamental
result we shall need here is the well-known division algorithm.

Theorem 4.9

Let P(x) and Q(x) be polynomials of degree n and m, respectively, where 1 =
m = n. Then there exists a unique polynomial S(x) of degree n — m and a
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unique polynomial R(x) of degree m — 1 or less such that

Px) = 0(x)S(x) + R(x). (4.16)

In this formula, a polynomial of degree 0 is a constant. Thus if Q(x) is a linear
polynomial, the result of dividing P(x) by Q(x) is a quotient S(x) and a remain-
der R (x) where R(x) is a constant.

PROBLEMS, SECTION 4.4

1:

4.4.1.

Let p(x) be given by (4.12) and let r be a value such that p(r) = 0. Show that there
exists a polynomial g(x) of degree n — 1 such that p(x) = (x — r)g(x). [Hint:
Consider (4.16) with Q(x) = (x — r).]

. In(4.12), let n = 4 and g, = 2, and assume that r, = 2 — 3iand r, = —2 — 3i are zeros

of p(x). Find ay, as, a,, and a;.

. What are the relationships between the coefficients of (4.12) and the derivatives of p

evaluated at zero. [Consider a Maclaurin expansion for p(x).]

. Using (4.16), show that if P(r) = P'(r) = 0, then P(x) = (x — r)*Q(x). Thus from

the remarks following (4.14), r is a zero of multiplicity 2 of P(x) if and only if P(r) =
P'(r) = 0, P"(r) # 0. It should be clear that this statement extends to zeros of
multiplicity m > 2.

. Establish the special case of (4.16) when Q (x) is the linear polynomial Q (x) = x — a.

To establish this case, let P(x) be a given polynomial: P(x) = ayx" + apx" ' +--- +
ay_1x + ay. Set S(x) = bgx® 1+ byx""2+---+ b, _ox + b,_, where by = a,and b; =
ab;_, + a;forj = 1,2, ..., n By comparing like powers in (4.16), establish the
identity P(x) = (x — @)S(x) + b,. )

. Establish (4.16) for Q(x) = (x — a)(x — B) as follows. By Problem 5, there is S(x)

such that P(x) = (x — a)S(x) + R(x). Now by Problem 5 there is T'(x) such that
Sx) = (x — BT (x) + Ri(x).

. Apply the ideas in Problems 5 and 6 to find the quotient and remainder in (4.16) for

P(x) = x> —3x*+ 2x* + x — 1 and for
a) Qx)=x+2
b) Ox) =x—1

c) Qx)=x*—5x+ 6

. Using the ideas in Problems 5 and 6, prove Theorem 4.9.

Efficient Evaluation of a
Polynomial and Its Derivatives

In order to use Newton’s method on a polynomial p(x) as given in Eq. (4.12),
we must be able to evaluate p(«) and p'(«) for any «. Direct substitution of &
into p(x) and p’(x), however, is far from the most efficient way to meet this
objective. Furthermore as we have noted before, if the initial iterate x, of



4.4 Zeros of polynomials 175

Newton’s method is not ‘“‘close’ to a zero, the Newton iteration may not
converge. [This is obviously the case if all of the zeros of p(x) are complex and
X, s real.] Thus we need some means of “‘localizing’’ a zero, r, of p(x) in order
to choose x; “‘close’” to r. Many of these *‘localization techniques’’ (see Section
4.4.3) require that we make a change of variable, r = x — «, and write p(x) as

px) = Bolx —a)* + Bilx — @)1+ + Byl —) + B, (4.17)

instead of in its original form, (4.12). By a Taylor’s expansion, we can write

" (n) 3
p() = pl@) + p'@c — a) + LI v — e+ o+ 2 (418
Equating (4.17) and (4.18), we see that
B; = p" ) /(n — j)! for 0 = j = n. (4.19)

This equation shows that it will be useful to have an efficient way of evaluating
not only p(a) and p'(«), but p(a), 2 = j < n, as well.

The technique we shall employ is known as nested multiplication or syn-
thetic division and is based on the division algorithm (4.16). We first note that
there is an alternative way of writing p(x). For example with n = 4, we can
write (4.12) as

px) = x(x(x(agx + ay) + @) + 6y + au (4.20)

We see that p(x) in (4.20) can be evaluated at x = a by only four multiplications
and four additions whereas (Problem 2) direct substitution of « into (4.12) for
n = 4 requires at least seven multiplications and four additions (if there is no
a; = 0). We can easily see that Eq. (4.20) can be extended for any value of n,
and this extension is given by the following algorithm.

Let p(x) be given by (4.12) and let @ be any constant. Let b, = a,, and
generate {h;}'_, by

b; = ab;_| + a;, l =j=mn;

then p(a) = b,.

This algorithm is known as synthetic division and is exactly analogous to
(4.20) where b, = p(a). A less intuitive but more rigorous development of
synthetic division is given in Problem 3. Note that the synthetic division al-
gorithm requires only n multiplications to form b, = p(a). This method is an
efficient means of evaluating p («), and moreover the iteration scheme can also
be used to evaluate all derivatives, p™(a), 0 = m = n.

To see this point, we consider the division algorithm (4.16) and write p (x) in
the form

px) = (x = a)g,—(x) + ry(x). (4.21)

In (4.12), a, # 0: so g, _,(x) has degree n — 1 and its leading coefficient is a,.
Further, ry(x) is the constant p(«a) as can be seen by setting x = « in (4.21).



