Newton’s Method
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This note will explain Newton’s method and quadratic convergence.
Newton’s method for the solution of a non-linear equation f(z) = 0 is the iteration
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This iteration looks for a fixed point of the function x — ;,((i)) Let s be a fixed point of g and assume
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g(s) =s— J{/((Z)) = 5. Computing ¢'(s) we find that ¢'(s) = W = 0. Taylor’s theorem at the point s
is b)) 7
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where ¢ is between x and s. Suppose that g is an initial guess and the errors are denoted by e, = x,, — s.
Suppose that |g2(§)| < K. Then
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This follows easily from (1). Now we have a good general result:

Theorem 1. The errors in Newton’s method satisfy
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Proof. The proof is by induction. It is true for n = 0. Assume (3). Then by (2).
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We will apply this to Newton’s method for finding square roots. Let ¢ > 1. Newton’s method for
solving #? — ¢ = 0 is to find a fixed point of g(z) = g - 2£ Then ¢"(z) = % Suppose = > +/c. Then
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| <K= \f Now suppose we choose xg so that zg > v/c and Kleg| < .1. Then by (3)
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So after 4 steps we have better than double precision (16 decimal digits) of precision.



