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Primer

Introduction. A European call option is a financial security that
gives its owner the right, but not the obligation, to purchase a pre-
determined asset at a pre-determined price and future time.

The owner of a European call option on stock A has the right, but not
the obligation, to purchase A at a fixed exercise price K on the expira-
tion date T. Let ST be the value of the stock on the expiration date, VT
be the value of the option on expiration. Then VT = max{0, ST −K}.
Observe that the value of an option is always non-negative, since the
owner of the option will not exercise the option if it will not be prof-
itable to do so, but that since ST is theoretically unbounded, so VT is
too.

Call options are a particularly interesting financial instrument be-
cause they offer unlimited potential for gain and zero potential for loss.
Options generally are useful because they enable parties to transfer
personally unacceptable risk to other parties who are willing to take
on the exposure for a premium. As both parties want a fair price, a
consistent way to price options would facilitate such transactions.

In fact, we will see that a European call option has a unique no-
arbitrage price, given a number of simplifying assumptions about in-
vestors’ preferences and market factors.

Definitions

Risk-neutral investors. Risk-neutral investors choose investments
solely on the basis of net present value of expected value of cash
flows. Thus, if investments A and B are mutually exclusive and satisfy
PV (E[A]) < PV (E[B]), a risk-neutral investor would prefer invest-
ment B. (Note: E[A] is a stream of cash flows. Each period lump sum
represents expected value of CFs in that period. See Present Value.)

No Arbitrage. The net present value of all investments is 0.
It follows that if an asset’s cash flows can be replicated exactly, the

asset’s price is equal to the present value of the replicating cash flows.

Present Value. A cash flow C today is worth more than the same
cash flow in the future. Intuitively, this is because I can invest C today
and receive C plus interest in the future (since interest rates are, with
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rare exceptions, positive in the US). For example, if the prevailing
yearly interest rate were 5%, $100 today would be equivalent to $105
in a year: I could take the $100 and invest it to receive $105 in a year,
or I could take the $105 in a year and borrow $100 now, paying 5% on
the principal. A present value function maps a stream of cash flows at
various times into a single dollar amount. Let CF be a stream of cash
flows {Ct}∞t=0, {rt}∞t=0. Then

PV (CF ) =
∞∑
t=0

Ct
(1 + rt)t

.

Net present value, NPV, is the present value of all positive and negative
cash flows involved in an investment (i.e. includes negative cash flow
to purchase the cash flow stream).

When computing continuous time, a cash flow Ct to be received t
units of time later has a present value of

PV (Ct) = Cte
−rt.

Note that the no arbitrage principle can be stated simply in terms
of PV: For any cash flow stream resulting from investment CFA,

NPV (CFA) = 0.

Arbitrage Theorem. (Ross p.72). Given an experiment with out-
comes {1,2,...,m} and n possible wagers, let xi be the amount bet on
wager i, ri(j) be the percentage return if the experiment’s outcome is
j, where j ∈ {1, 2, ...,m}. Then x = (x1, x2, ..., xn) is a betting strategy
with return

∑n
i=1 xiri(j).

The arbitrage theorem states that either
a) there is a probability vector p = (p1, p2, ..., pm) so that

∑m
j=1 pjri(j) =

0 for all i ∈ {1, 2, ..., n}, or
b) there is a betting strategy x = (x1, x2, ..., xn) so that

∑n
i=1 xiri(j) >

0 for all j ∈ {1, ...,m}. (Ross proves this on p.78 via the Duality The-
orem of Linear Programming.)

Central Limit Theorem (Ross p.27-28). Let {Xi}ni=1 be indepen-
dent, identically distributed random variables with expected value µ,
variance σ2, Sn =

∑n
i=1Xi. Then for large n,Sn is approximately nor-

mal with expected value nµ, variance nσ2.

Example. Suppose a stock is currently priced at $100, and will be worth
either $50 or $200 next period. Let r be the one period interest rate.
By the arbitrage theorem, no sure win exists if there exists a probability
vector (p, 1−p) on the future stock prices so that the expected present
value is zero, whether an investor purchases the stock or the option.

The expected return on the stock is given by E[return] = p 150
1+r

+
50

1+r
− 100. Set this equal to zero and solve for p to get p = 1+2r

3
. Thus,
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there is a unique probability vector so that no arbitrage exists for the
stock.

Now consider the option. Let C be the fair price of a call option
on this stock. Since the probability vector (p, 1 − p) with p = 1+2r

3
is

unique for the stock, the present value of the payoff to the holder of a
call option is E[return] = 1+2r

3
50

1+r
− C, so C = 50+100r

3(1+r)
.

Deriving the Black Scholes Formula for a Call Option

Each derivation uses the following assumptions, stated in Black and
Scholes (1973, p. 640)):

• The short-term interest rate is known and constant through
time.
• The stock price follows a random walk in continuous time with

a variance rate proportional to the square of the stock price.
• The stock pays no dividends or other distributions.
• The option is European, i.e. can only be exercised at maturity.
• There are no transaction costs in buying or selling the stock or

option.
• It is possible to borrow any fraction of the price of a security

to buy or hold it, at the short-term interest rate.
• There are no penalties to short selling.

Black and Scholes’ Derivation

Let w(x, t) be the value of the option as a function of x, the price of
the underlying stock, and t, the time. Then for each share of underlying
stock an investor owns, he must sell short 1/w1(x, t) options to hedge
his position, where w1(x, t) = ∂w

∂x
(x, t). The resulting portfolio value E

is given by E = x− w
w1
.

(Note that for such a hedged position, for small ∆x and a small time
interval ∆t, ∆E = ∆x− ∆w

w1
≈ 0.)

Independent of whether the position is hedged continuously or not,
the return on the above hedged position is certain, and by the arbitrage
principle, the risk-free rate. If the position is hedged continuously, the
return on the hedged position becomes certain. If the position is not
hedged continuously, the portfolio’s risk is small even for large changes
in the underlying stock’s price, and consists entirely of unsystematic
risk. Hence, again by the arbitrage principle, the return on the hedged
position is certain. Thus, the rate of return is given by the short term
risk-free rate r∆t, and the total return is given by the equity position
multiplied by this rate: ∆E = (x− w/w1)r∆t, where r is the risk-free
rate of return.

By stochastic calculus,

∆w = w1∆x+
1

2
w11v

2x2∆t+ w2∆t,
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where v2 is the variance of the stock return. Then

∆E = −
(

1

2
w11v

2x2 + w2

)
∆t

w1

= (x− w/w1)r∆t.

The equivalent partial differential equation is

w2 = rw − rxw1 −
1

2
v2x2w11.

Now consider the boundary conditions imposed by the structure of
the call option. Let t∗ be the maturity date of the option. Then

w(x, t∗) = max{x− c, 0}.
By considering the substitution

w(x, t) = er(t−t
∗)y[(2/v2)

(
r − v2

2

)
[lnx/c−

(
r − v2

2

)
(t− t∗)]

−(2/v2)

(
r − v2

2

)2

(t− t∗)],

the differential equation becomes

y2 = y11

with boundary conditions

y(u, 0) =

0, u < 0

c

[
eu(v2/2)/(r−v2/2) − 1

]
, u ≥ 0.

Observe that the differential equation has reduced to the heat equation!
Its solution is given by Churchill (1963, p.155). We obtain

w(x, t) = xN(d1)− cer(t−t∗)N(d2),

d1 =
ln(x/c) + (r − v2/2)(t∗ − t)

v
√
t∗ − t

,

d2 =
ln(x/c) + (r − v2/2)(t∗ − t)

v
√
t∗ − t

,

where N(d) is the cumulative normal density function.

Binomial approximation to geometric Brownian motion

Sheldon Ross derives the Black Scholes formula for an option’s price
by a probabilistic argument. He first notes that a multiperiod binomial
up/down model for stock prices yields a unique no-arbitrage price on
a call option. Then he demonstrates that every geometric Brownian
motion can be approximated by such a multiperiod binomial model,
where the approximation becomes exact as the time increments shrink
to zero. Thus, when stock prices are modeled by a geometric Brown-
ian motion, a call option has a unique no-arbitrage price, given by a
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multiperiod binomial model’s unique no-arbitrage price with infinintely
small time increments.

Multiperiod binomial model has geometric Brownian motion
as its limiting process (Ross p.32-35). Stock prices S(y) follow a
geometric Brownian motion with drift parameter µ and volatility pa-
rameter σ if, for all nonnegative values of y and t, the random variable

S(t+ y)

S(y)

is independent of all prices up to time y, and

log

(
S(t+ y)

S(y)

)
is a normal random variable with mean µt and variance tσ2. Then the
expected stock price grows at rate µ+ σ2/2.

Now consider a multiperiod binomial model with time increments ∆,
in which the price of a stock increases by a factor of u with probability
p or decreases by a factor of d with probability 1-p, with

u = eσ
√

∆, d = e−σ
√

∆, p =
1

2

(
1 +

µ

σ

√
∆

)
.

Let Yi be 1 if the price increases at time i∆, 0 if it decreases. Then
in the first n time increments, the stock has increased

∑n
i=1 Yi times,

and decreased n−
∑n

i=1 Yi times. So S(n∆), the time at the end of the
period, is

S(n∆) = S(0)u
∑n

i=1 Yidn−
∑n

i=1 Yi

⇔ S(n∆) = dnS(0)

(
u

d

)∑n
i=1 Yi

.

Let t = n∆ to obtain

S(t)

S(0)
= dt/∆

(
u

d

)∑t/∆
i=1 Yi

.

Then

log

(
S(t)

S(0)

)
=
−tσ√

∆
+ 2σ

√
∆

t/∆∑
i=1

Yi.

Take ∆ → 0, and by the central limit theorem,
∑t/∆

i=1 Yi becomes nor-
mal, so log(S(t)/S(0)) is a normal random variable. It follows from the
above formula that the variable also has mean µt, variance σ2t. Hence,
the binomial model exactly approximates a geometric Brownian motion
as ∆ grows arbitrarily small.
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No-arbitrage option price under multiperiod binomial model
(Ross p.76). Suppose that stock prices at time period t, {St}∞t=0,
evolve as follows: The initial stock price is S(0), the interest rate is r,
and S(t) = uS(t− 1) or dS(t− 1), with d < 1 + r < u. Let

Xi =

{
1 if S(t)=uS(t-1),

0 if S(t)=dS(t-1).

We want to find the probability vector P (X1 = x1, ..., Xn = xn), i =
1, ..., n so that all bets are fair. Let α = P (X1 = x1, ..., Xi−1 =
xi−1), p = P (Xi = 1|α). Then the expected gain on this bet in i-1 time
units is α[p(1 + r)−1uS(i− 1) + (1− p)(1 + r)−1dS(i− 1)− S(i− 1)],
which is 0 only when p = 1+r−d

u−d .
Suppose Xi are independent Bernoulli (0 or 1) random variables

with success probability p, where success is defined to be an increase in
stock price and indicated by Xi = 1. Then Y =

∑n
i=1Xi is a binomial

random variable with parameters n, p. Then S(n) = uY dn−Y S(0), so
the present value of owning a call option on the stock is

(1 + r)−n max{S(n)−K, 0},
and the expected present value of owning it is

(1 + r)−nE[max{S(n)−K}] = (1 + r)−nE[max{S(0)uY dn−Y −K}].
Then the unique no-arbitrage option cost C is

C = (1 + r)−nE[max{S(0)uY dn−Y −K}]

No-arbitrage option price under geometric Brownian motion
(Ross p.85-88). Consider the multiperiod binomial model in which
a stock price can increase by a factor of u with probability p, decrease
by a factor of d with probability 1-p, where

u = eσ
√
t/n ≈ 1 + σ

√
t/n+

σ2t

2n
,

d = e−σ
√
t/n ≈ 1− σ

√
t/n+

σ2t

2n
,

where n is large, and the approximations are given by the first three
terms of the Taylor expansion of ex about x = 0. Let K be the exercise
price of a call option, and t be the exercise time. Then the payoff to a
call option owner is max{S(t)−K, 0}.

Recall that the no-arbitrage probability vector is given by p = 1+rt/n−d
u−d ≈

1
2

+
r
√
t/n

2σ
− σ
√
t/n

4
. Let Y be a binomial variable with parameters n,

p as before. Again, as n grows large, by the central limit theorem, Y
becomes normal. Then

C = (1 + rt/n)−nE[max{0, S(0)uY dn−Y −K}]

= (1 + rt/n)−nE[max{0, S(0)eW −K}],
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where W = 2σ
√
t/nY − σ

√
nt. It follows that EW ≈ (r − σ2/2)t,

V ar(W ) ≈ σ2t, where the approximates become exact as n grows large.
Then the unique no-arbitrage price is given by

C = e−rTEmax{S(0)eW −K, 0},
where W is normal with mean (r − σ2/2)t, variance σ2t. Then

C = S(0)ψ(w)−Ke−rtψ(w − σ
√
t,

where

w =
rt+ σ2t/2− log(K/S(0))

σ
√
t

,

and ψ(x) is the standard normal distribution function. So we have
obtained the Black Scholes option pricing formula.
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