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1 Abstract

The purpose of this paper is to review the results of Chayes, Chayes, and Durett
(CC&D) in their paper Connectivity Properties of Mandelbrot’s Percolation Pro-
cess [1]. The Mandelbrot percolation process involves subdividing a square and
discarding each sub-square independently with probability p, forming a set. The
process is then applied recursively for every remaining sub-square to form suc-
cessive sets. The most striking result from CC&D’s paper is that if the process
is iterated indefinitely, and if the plane is tiled with independently generated
copies of the set, then there exists a critical probability pc ∈ (0, 1) such that if p
is greater than or equal to pc, then the union of the sets contains an unbounded,
connected component; however if p is less than pc, the largest connected com-
ponent is a point; that is, any point still remaining in the set is disconnected
from every other point in the set.

2 Introduction and Definitions

2.1 Notation

Throughout this paper, we will be using notation related to probability theory.
We shall let {event} denote a probabilistic event; that is, a set of possible
outcomes in a sample space. The notation P (E), where E is an event, shall
denote the probability measure of that event taking place. Unfortunately, a
discourse on probability measure is outside the scope of this paper, so we shall
rely on the reader’s intuition for the construction of the necessary measure.

2.2 Ordinary Percolation

Fig. 2.1: Site percolation, open with p = 0.644
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Fig. 2.2: Site percolation, open with p = 0.257

We start with a definition of “ordinary” percolation, which is in some sense
a simpler process than Mandelbrot percolation. Specifically, will be looking at
site percolation, as it is more closely related to Mandelbrot percolation.

We shall start with the finite case. Fix a probability p, such that 0 < p < 1.
Let R = [0, L] × [0, L] be a square of side length L. Let N be a positive
integer, and subdivide R into N2 subsquares of equal size. For each subsquare
[iL/N, (i+1)L/N ]×[jL/N, (j+1)L/N ], independently fill in the subsquare with
probability p. We shall refer to a filled in subsquare as closed and an unfilled
subsquare as open. Though the resulting set has many interesting properties,
the one we are chiefly concerned with is the probability of finding a path through
open points.

In the infinite case, we typically take the subsquares above to be the squares
of the form [i, i + 1] × [j, j + 1] where i, j ∈ Z, and apply the above procedure
to every such square. The main focus of interest in the infinite case is, given
a point in the plane, whether or not it can be connected to the origin through
paths that only go through open subsquares.

2.3 Mandelbrot Percolation

Here we give a somewhat more rigorous definition of the Mandelbrot percolation
process. Just as in site percolation, we fix a probability parameter p. We also
set N to be the degree of subdivision such that at each step, we subdivide into
N2 smaller squares. Letting A0 = [0, 1]2, we then define An as follows: with
1 ≤ i, j ≤ N , let

Bni,j =

[
i− 1

Nn
,
i

Nn

]
×
[
j − 1

Nn
,
j

Nn

]
.
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Fig. 2.3: Mandelbrot percolation, kept with p = 0.8888

Let λni,j ∈ {0, 1} be independent random “coin flips” such that P (λni,j = 1) = p.
We then let

An = An−1 ∩

 ⋃
λn
i,j=1

Bni,j

 .

We shall define A∞ as the set resulting when n is taken to infinity.
The set A∞ has some interesting properties that, while not the focus of

this paper, are still worthwhile to briefly discuss. A slightly more thorough
discussion can be found in CC&D [1].

(1) A∞ 6= ∅ with positive probability if and only if p > 1/N2.
If the probability parameter p falls too low, then not only will A∞ be sparse

but it will cease to contain any points at all.
(2) If p ≤ 1/N and x is not of the form m/Nn for some integers m and n,

then P (A∞ ∩ ({x} × [0, 1]) = ∅) = 1.
If p is once again too low, then with probability 1 and except for certain

values of x, one can draw a horizontal line through [0, 1]2 at height x without
hitting a single point of A∞. From this, we can conclude that the largest
connected component of A∞ must be a point.

(3) If p ≤ 1/
√
N , then the largest connected component of A∞ is a point.

This lemma simply strengthens the previous statement by increasing the
lower bound for which A∞ ceases to be disconnected.

These statements imply that we can find an actual value p for which A∞
stops being completely disconnected; we shall call this value pd.

Definition. Let pd = sup{p : P (A∞ is completely disconnected) = 1}.
Just as in site percolation, we wish to examine the probabilities of a left-right

crossing of A∞, and at what point a left-right crossing becomes assured. This
motivates another definition:

4



Fig. 2.4: Mandelbrot percolation, kept with p = 0.7071

Definition. Let pc = inf{p : P (A∞ has a left-right crossing) = 1}.
It is intuitive that pd must be less than pc; after all, we must cease being

disconnected before we can start crossing the square. However, as we will prove,
the values pc and pd are in fact exactly equal to each other.

3 Analysis of Connectivity

We wish to define some notion of “connectedness” in A∞; for the purposes of
this paper, the existence of a left-right crossing of [0, 1]2 within A∞ is considered
sufficient.

Definition. Let Bn be the set of all points x in An such that x can be connected
to the left and right sides of the square (that is, {0}× [0, 1] and {1}× [0, 1]) by
paths in An.

Definition. Let B∞ be the intersection

∞⋂
n=1

Bn.

Definition. Let Ωn1 be the event {Bn 6= ∅}, and Ω∞1 be the event {B∞ 6= ∅}.

Definition. A left-right crossing of [0, 1]2 exists if and only if the event Ω∞1
occurs.

Theorem 1. pc(N) < 1 for all N ≥ 2.

This theorem states that the minimum required parameter p for having a
positive probability of a left-right path in A∞ does in fact exist with a non-trivial
value. The proof follows the case where N = 3, but can be easily generalized to
N ≥ 3. The case for N = 2 can be compared to the case for N = 4. We start
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with N = 3 because this gives us the nice property that if at least 8 of the 9
sub-squares of a square are occupied, then any two adjacent sub-squares have
adjacent occupied boundary sub-squares.

Theorem 2. There is an ε0 > 0 so that if P (Ωn1 ) ≤ ε0 then P (Ω∞1 ) = 0.
Furthermore, the largest connected component is a point.

This theorem shows that if the probability of a Ωn1 occurring drops below
some threshold, then there will be no left-right path for A∞ and the set will
“disintegrate”: any given point that still remains in A∞ will not be connected
to any other points in A∞. It also follows from this theorem that P (Ω∞1 ) holds
a positive value at pc (and is zero if p < pc). The proof of this theorem is
based off of a similar proof from “ordinary” percolation, after some details are
generalized to work with our setting.

Definition. Let Ωn1,K be the event that there is a left-right crossing of [0, 1] ×
[0,K], where for 1 ≤ k ≤ K each square [0, 1] × [k − 1, k] is filled with an
independent copy of An.

Lemma 2.1. if P (Ωn1,1) ≤ ε then P (Ωn1,K) ≤ fK(ε) where fK(ε)→ 0 as ε→ 0.

Lemma 2.2. if P (Ωn1,2) ≤ 0.01 then P (Ωn+k1,2 ) ≤ 1
25 exp(−Nk−1).

With these two lemmas, it is fairly simple to prove Theorem 2. We first pick
ε0 such that f2(ε) ≤ 0.01 for all ε ≤ ε0. If we have n such that P (Ωn1,1) < ε0,
then the above two lemmas imply P (Ωn1,1) ≤ P (Ωn1,2) and that P (Ωn1,2) heads
to zero as n heads to infinity. Applying Lemma 2.1 again shows P (Ωn1,K) → 0
for all K < ∞. Note that the event “there does not exist a left-right crossing
through elements in the set” is equivalent to the event “there exists a top-bottom
crossing through elements removed from the set”. We shall call this latter event
a crack. Due to the self-similarity properties of An, we can then derive that
there exists, with probability 1, a crack in [a, b]× [0, 1] for all a < b of the form
a = j/Nm, b = k/Nm. Since this will also be true for rectangles of the form
[0, 1]× [a, b], it follows that as n→∞, every point will be separated from every
other point by these cracks.

With Theorem 2, we can now determine that the probability of a left-right
crossing is greater than zero when p = pc. To prove this, note that since Pp(Ω

n
1 ),

as a function of p, is continuous and decreases to Pp(Ω
∞
1 ) as n → ∞, Pp(Ω

∞
1 )

is upper semi-continuous. Since Pp(Ω
∞
1 ) is non-decreasing, it must be right

continuous on [0, 1], and hence must be greater than zero at p = pc.
The last theorem requires the definition of an additional construct: we take

A′∞ to be the tiling across the plane of independently formed copies of A∞. That
is, in each square [z1, z1 + 1] × [z2, z2 + 1] for z ∈ Z2, we place in independent
copy of A∞.

Definition. Let Ω∞ be the event that there exists in A′∞ an unbounded con-
nected component.
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Definition. Let pb = inf{p : P (Ω∞) > 0}. It is easy to see that pb ≥ pc. To
prove our final results, we wish to show that pb is in fact equal to pc (which is
equal to pd by the theorem above).

Theorem 3. If p ≥ pc, then with probability 1, A′∞ has a unique unbounded
connected component.

The consequences of this theorem are the most striking. We know that if
p is less than pc, then the largest connected component in A′∞ is a point, and
yet the moment p equals pc, we witness the appearance of a unique unbounded
connected component.

The proof proceeds as follows: We can rescale A′∞ by dividing by N . We
then observe that if we flip new coins to see which squares of the form [(i/N), (i+
1)/N ] × [j/N, (j + 1)/N ] we keep, the result has the same distribution as A′∞.
If we rescale and keep all of our existing squares, then this is the equivalent of
having all coins land “heads”. Thus,

A′∞/N
d
= (A′∞|all λ1ij).

where the symbol
d
= is used to denote the equivalence of the distributions.

Generalizing this result, we have

A′∞/N
n d

= (A′∞|all λmij ,m ≤ n).

From this, we can intuitively see that the probability of a left-right crossing
of [0, Nn]2 in A′∞ heads to 1 as Nn increases to infinity. We can prove this
formally by first observing that P (Ωn1 ) approaches P (Ω∞1 ) as n → ∞, so with
ε > 0 and n large, we have

P (Ωn1 − Ω∞1 ) ≤ εP (Ω∞1 ) ≤ εP (Ωn1 )

where Ωn1 − Ω∞1 represents the event of a left-right crossing in Am for m ≤ n,
but not for m > n. Through some simple manipulation, we see that this is
equivalent to the statement

P (Ω∞1 |Ωn1 ) ≥ 1− ε,

and thus
P (Ω∞1 |λmij = 1,m ≤ n) ≥ 1− ε.

With this, we have shown that the crossing probabilities of large squares is
close to 1. The remaining proof follows from two additional lemmas, similar to
those from Theorem 2. To make the proof slightly easier, we will consider the
situation after n subdivisions and prove results which are independent of n.

Definition. Let A′n be the set which results when we place independent copies
of An in each square [z1, z1 + 1]× [z2, z2 + 1] for z ∈ Z2.

Definition. Let ΩnJ,K be the event that there is a left-right crossing of [0, J ] ×
[0,K] in A′n.
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Lemma 3.1. if P (ΩnL,L) ≥ 1 − ε then P (ΩnkL,L) ≥ 1 − gk(ε) where gk(ε) is
independent of n and gk → 0 as ε→ 0.

Lemma 3.2. if P (Ωn2L,L) ≥ 0.99 then P (Ωn2kL,2k−1L) ≥ 1− 1
25 exp(−2k−1).

We invite the reader to notice the similarity between these two lemmas and
the two we required for Theorem 2.

Taking L such that P (Ωn2L,L) ≥ 0.99 for all n when p = pc, let R1 =
[0, 2L]× [0, L], R2 = [0, 2L]× [0, 4L], and for j ≥ 2 let

R2j−1 = [0, 2jL]× [0, 2j−1L]

R2j = [0, 2jL]× [0, 2j+1L].

Furthermore, we define the following set of events:

Xn
2j−1 = there is a left-right crossing of R2j−1 in A′n

Xn
2j = there is a top-bottom crossing of R2j in A′n.

These events are chosen so that if all crossing occur, then we are guaran-
teed an infinite path in A′n starting in {0} × [0, L]. Using the estimate from
Lemma 3.2, we have

P (Xn,c
2j−1) ≤ 1

25 exp(−2j−1)

P (Xn,c
2j ) ≤ 1

25 exp(−2j)

where the superscript c represents the complement. Using the facts 2(j − 1) ≤
2j−1 and e ≥ 2, we have

∞∑
k=1

P (Xn,c
k ) ≤

∞∑
j=1

2 · 1
25 (e−2)j−1 = 2

25 (1− e−2)−1 ≤ 2
25 ·

4
3 <

1
9 .

From this it immediately follows that P

( ∞⋂
k=1

Xn
k

)
> 8/9, and thus with a

probability greater than 8/9 there is an infinite path in A′n starting in {0}×[0, L].
Letting n→∞ it is easy to see that this result still holds for n =∞.

We now have the existence of an unbounded component when p ≥ pc. The
proof that it is unique is the same as in the ordinary case, and is properly
developed in Harris [3].

It is interesting to note that in ordinary site percolation, the transition in
the existence of the component is continuous, while in Mandelbrot percolation
there is a violent discontinuity. As is hopefully clear to the reader, this is largely
due to the fact that while ordinary percolation is “symmetric” in some sense
with respect to the open/closedness of its subsquares, Mandelbrot percolation
contains a fundamental asymmetry: while vacant crossings persist to all further
iterations, occupied crossings may be lost in any subsequent steps.
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3.1 Proof of Theorem 1

Recall that we will only be proving the case N = 3, as cases for larger N will
proceed in the same manner.

Definition. Let A1
i,j be a subsquare of A1, and let Ani,j be a subsquare of An−1i,j .

Theorem 1. pc(N) < 1 for all N ≥ 2.

Proof. We will call an outcome good if A1 contains at least 8 squares A1
i,j .

Additionally, we will call an outcome very good if each A1
i,j of a good A1 is itself

good. Thus, we can define the concept of (very)m goodness of A1 as containing
at least 8 occupied sub-squares A1

i,j which are each (very)m−1 good. Let θm
be the probability that the outcome is (very)m good. We can see from the
definitions above that

θ0 = p9 + 9p8(1− p)

and
θm = p9(θ9m−1 + 9θ8m−1(1− θm−1)) + 9p8(1− p)θ8m−1 (3.1)

for m ≥ 1. If we assign θ−1 the value 1, then we can in fact calculate θ0 from
(3.1). We can thus think of θm as the value of ϕm+1(1), where

ϕ(x) = p9(9x8 − 8x9) + 9p8(1− p)x8

and ϕm+1(x) = ϕ(ϕm(x)). It follows that as n increases to infinity, ϕn(1)
decreases to a value ρ, the largest fixed point of ϕ in the interval [0, 1].

Letting α = p9 and β = 9p8(1− p), we can rewrite (3.1) as

ϕ(x) = (9α+ β)x8 − 8αx9.

Let x = 1− ε. We can expand the expression (1− ε)k as

(1− ε)k = 1− kε+
k(k − 1)

1 · 2
ε2 − k(k − 1)(k − 2)

1 · 2 · 3
ε3 + · · ·

From this, we can easily see that when (9− 3)ε/4 < 1,

(1− ε)9 ≤ 1− 9ε+ 36ε2. (3.2)

Then for ε < 2/3,

ϕ(1− ε) ≥ (9α+ β)(1− 8ε)− 8α(1− 9ε+ 36ε2)

= (α+ β)− 8βε− 288αε2.

We know that both α and β are greater than zero, and also that their sum is
less than or equal to one. Thus, if we take ε < 1/8(< 2/3), we can see that
ϕ(1−ε) ≥ α−288ε2. With this result, we now let ε = 0.001 and α = 1−0.5ε to
calculate ϕ(1−ε) ≥ 1−0.788ε. Thus, ϕ has a fixed point in the interval [0.999, 1].
Since α = p9, and from (3.2) we have (1− δ)9 ≥ 1− 9δ when (9− 2)δ/3 < 1, it
follows that if p > 0.9999 then P (Ω1) > 0.999.
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3.2 Connectedness for Ordinary Percolation

In order to prove the next few results about Mandelbrot percolation, we wish to
generalize from similar results from “ordinary” percolation. To begin, we work
up from some basic lemmas.

Lemma 4.1 (Harris’ Inequality). If E and F are both increasing or both de-
creasing events, then

P (E ∩ F ) ≥ P (E)P (F ).

A detailed proof of this lemma is given in Kesten (1982) [5], though it is
available in many of the other references we consulted. If the reader is so
inclined, we invite them to read through the proof, as it is interesting in its own
right.

Lemma 4.2 (The Square Root Trick). Let A1 and A2 be increasing events. If
A = A1 ∪A2 and P (A1) = P (A2), then

P (A1) ≥ 1− (1− P (A))1/2.

Proof. Utilizing Harris’ Inequality and some basic set theory, we get:

(1− P (A1))2 = P (Ac1)2 = P (Ac1)P (Ac2)

≤ P (Ac1 ∩Ac2) = 1− P (A)

and so P (A1) ≥ 1− (1− P (A))1/2.

Definition. Let ρJ,K be the probability there is a left-right crossing of [0, J ] ×
[0,K] by open sites when sites are independently open with probability p (and
thus independently closed with probability 1− p).

We now wish to prove a crucial building block:

ρ3L/2,L ≥ (1− (1− ρL,L)1/2)3. (3.3)

The following procedure is based off of Russo (1981) [7], as well as Harris
[3]. It appears both were developed from a version by Seymour and Welsh [8].
The reader is referred to any of these papers for alternative statements and
explanations if the following seems confusing. We now direct the reader’s eyes
to Fig. 3.1 and set up a series of definitions:

Let s be a left-right crossing of [0, L]× [0, L].
Let Es be the event that s is the lowest such left-right crossing.
Let sr be the portion of s from the time it last hits {L/2} × [0, L] until it

reaches {L} × [0, L] (represented by the thick line in Fig. 3.1).
Let srr be the reflection of sr through {L}× [0, L] (represented by the dotted

line in Fig. 3.1).
Let A (sr ∪ srr) be the points in [L/2, 3L/2]× [0, L] strictly above sr ∪ srr.
Let Fs be the event that there is a path starting from [L/2, 3L/2]×{L} and

connected to sr in A (sr ∪ srr).
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Fig. 3.1

Let Sl be the set of all paths s for which the first point of sr has a y-coordinate
less than L/2.

Let G be the union of Es ∩ Fs over all paths s ∈ Sl.
Let H be the event that there is a left-right crossing of [L/2, 3L/2] × [0, L]

which starts at a point with y-coordinate greater than L/2.
If we have both G and H, then it is easy to see that there exists a left-right

crossing of [0, 3L/2]× [0, L]. Thus, to prove (3.3) it suffices to show

P (G ∩H) ≥ (1− (1− ρL,L)1/2)3.

Proof. By Harris’ Inequality, we have

P (G ∩H) ≥ P (G)P (H).

We then apply the square root trick using the events H and H ′, where H ′ is
the event H reflected over the line y = 1/2, to get:

P (H) ≥ (1− (1− ρL,L)1/2).

We can estimate P (G) as:

P (G) =
∑
s∈Sl

P (Es ∩ Fs) =
∑
s∈Sl

P (Es)P (Fs|Es).

Another application of the square root trick, again using a reflection over
y = 1/2, yields ∑

s∈Sl

P (Es) ≥ 1− (1− ρL,L)1/2.

Note that, since Fs is independent of Es,

P (Fs|Es) = P (Fs). (∗)
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Since a top-bottom crossing of the square L/2, 3L/2] would necessarily imply
either Fs or F ′s (the reflection over x = L; note that srr does not have to be an
open path), we can apply the square root trick one last time to yield

P (Fs) ≥ 1− (1− ρL,L)1/2.

Putting everything together we have (3.3).

Fig. 3.2

We now wish to show that, with k ≥ 1:

1− ρkL,L ≤ 3(1− ρ(k+1)L/2,L). (3.4)

Proof. Observe in Fig. 3.2 that if all three paths exist, then there is a left-
right crossing of the rectangle. Let X1 be the event of a left-right crossing of
[0, (k − 1)L/2] × [0, L], and X2 and X3 be similar events for [0, L] × [0, L] and
[0, (k + 1)L/2]× [0, L]. From basic probability theory, we know that

P

(
3⋃
i=1

Xc
i

)
≤

3∑
i=1

P (Xc
i ).

Since it is easy to see that ρL,L ≥ ρ(k+1)L/2,L for k ≥ 1, our proof is complete.

Combining (3.3) and (3.4), we can derive:

ρ3L/2,L ≥ (1− (1− ρL,L)1/2)3

1− ρ2L,L ≤ 3(1− ρ3L/2,L)

1− ρ3L,L ≤ 3(1− ρ2L,L)

and so on, which bounds ρkL,L in terms of ρL,L. Thus, we can state the following:

Lemma 4.3. if ρL,L ≥ 1− ε then ρkL,L ≥ 1−hk(ε) where hk(ε) is independent
of L and hk → 0 as ε→ 0.

We now need just one other lemma:

Lemma 4.4. if ρ2L,L ≥ 0.99 then

ρ2kL,2K−1L ≥ 1− 1
25 exp(−2k−1).
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Fig. 3.3

Proof of this lemma requires the use of the following two inequalities:

1− ρ4L,L ≤ 5(1− ρ2L,L). (3.5)

ρ4L,2L ≥ 1− (1− ρ4L,L)2. (3.6)

Proof. To prove (3.5), refer to Fig. 3.3 and observe that if all five paths exist,
then there is a left-right crossing of the entire rectangle. The proof can be
argued as in the proof of (3.4).

To prove (3.6), observe that the existence of a crossing in [0, 4L]× [0, L] and
[0, 4L] × [L, 2L] are independent events. Furthermore, a crossing of [0, 4L] ×
[0, 2L] must occur if at least one of the above crossing occurs.

Combining (3.5) and (3.6), we have

ρ4L,2L ≥ 1− 25(1− ρ2L,L)2 (3.7)

Now if ρ2L,L = 1− δ/25, where δ < 1, then from (3.7) we have:

ρ4L,2L ≥ 1− δ2/25

ρ8L,4L ≥ 1− δ4/25

and so on. That is to say,

ρ2kL,2k−1L ≥ 1− 1
25 exp(2k−1 log δ).

Letting δ = 1/4, and using the fact that log(1/4) < −1, we have 4.4.
While these two lemmas apply only to “ordinary” percolation, we only need

to make a few minor adjustments to adapt them to our discussion of Mandelbrot
percolation.

3.3 Proofs of Theorems 2 and 3

The reader should be informed that Harris’ Inequality generalizes to our dis-
cussion easily, as the variables that indicate whether the squares [j/Nn, (j +
1)/Nn] × [k/Nn, (k + 1)/Nn] are occupied or not are increasing functions of
independent random variables. Thus, any step using or deriving from Harris’
Inequality can remain unchanged, and we only need to watch out for the two
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places we made assumptions about independence. We will first prove Lemmas
3.1 and 3.2, as these follow more easily from the results in the previous section.
We will then finish up by proving Lemmas 2.1 and 2.2.

Lemma 3.1. if P (ΩnL,L) ≥ 1 − ε then P (ΩnkL,L) ≥ 1 − gk(ε) where gk(ε) is
independent of n and gk → 0 as ε→ 0.

Fig. 3.4

Proof. Although Fs and Es are no longer independent, if we can still show that
P (Fs|Es) ≥ P (Fs), we can follow the same proof as Lemma 4.3. To this end, we
introduce some new notation; referring to Fig. 3.4 will be helpful to the reader
(shaded squares are occupied, blank squares are vacant, and squares marked
with u are unconditioned; that is, their occupancy or vacancy does not affect
our discussion).

Let s be the lowest left-right crossing of [0, 1]n in An. In this case, s
is a union of adjacent squares. We consider squares to be adjacent if they
share a common side. Let A (s) be the region above s. A square of the
form [(i − 1)/Nm, i/Nm] × [(j − 1)/Nm, j/Nm],m ≤ n is said to be uncon-
ditioned if it lies in A (s), since its coin flip λmi,j is independent of the event
{s is the lowest left-right crossing of An}.

However, for any square that intersects s, we know that its coin flip λmij
must have resulted in a 1; otherwise it would have been removed and the path
s would not exist. From this, we can conclude that the inequality holds, and
thus Lemma 3.1 follows exactly as Lemma 4.3.

The second lemma is even easier to adapt.

Lemma 3.2. if P (Ωn2L,L) ≥ 0.99 then P (Ωn2kL,2k−1L) ≥ 1− 1
25 exp(−2k−1).
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Proof. The existence of left-right crossings in [0, 4L]× [0, L] and [0, 4L]× [L, 2L]
are independent events by the nature of Mandelbrot percolation, and so (3.5) is
satisfied. Thus, Lemma 4.4 generalizes nicely to our situation.

We now move on to the lemmas required for Theorem 2.

Lemma 2.1. if P (Ωn1,1) ≤ ε then P (Ωn1,K) ≤ fK(ε) where fK(ε)→ 0 as ε→ 0.

Proof. Observe that by turning the lemma into a statement about paths through
vacant squares, as opposed to occupied squares, we get something that looks very
similar to previous results. It is can be seen that, if we allow vacant crossings to
cross through diagonal neighbors as well as regular ones, for [0, J ]× [0,K] there
is always either an occupied left-right crossing or a vacant top-bottom crossing,
but not both. Letting Ω̃nJ,K be the probability of a top-bottom crossing of
[0, J ]× [0,K] through vacant squares, it is sufficient to prove the following:

If P (Ω̃n1,1) ≥ 1−ε then P (Ω̃n1,K) ≥ 1−fK(ε) where fK(ε)→ 0 as ε→ 0. (3.8)

As can be seen, we can prove this statement just as we proved Lemma 3.1 once
we show that P (F̃s|Ẽs) ≥ P (F̃s), where we use the symbol ∼ to indicate the
corresponding events defined for vacant crossings. However, unlike Lemma 3.1,
we cannot conclude that the corresponding coin flip for a square is 0 simply
because it intersects s. Fortunately we are able to apply Harris’ inequality in
this case, and thus (3.8) follows nicely.

We are now left with one final proof.

Lemma 2.2. if P (Ωn1,2) ≤ 0.01 then P (Ωn+k1,2 ) ≤ 1
25 exp(−Nk−1).

Proof. Just as in the previous proof, we will convert the statement into one
regarding vacant crossings, and so it is sufficient to prove:

If P (Ω̃n1,2) ≥ 0.99 then P (Ω̃n+k1,2 ) ≥ 1− 1
25 exp(−Nk−1). (3.9)

Since
P (Ω̃nNm,2Nm) = P (Ω̃n+m1,2 |all εkij = 1 when k ≤ m),

it suffices to show P (Ω̃nNm,2Nm) heads to 1 exponentially fast. However, due
to our perspective change to vacant crossings, we now have the necessary inde-
pendence just as in Lemma 3.2, and the rest of the proof follows in the same
way.
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