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Introduction 
 

Dan Kalman begins his article by claiming that “Every teacher of linear algebra should be 
familiar with the matrix singular value decomposition.”  He emphasizes that the singular value 
decomposition (which we will refer to as the SVD from here on) is not far beyond the scope of a 
first course in linear algebra, and that it also has significance in theoretical and practical 
applications.  Kalman’s primary goal in his paper is to make more people aware of the SVD, 
particularly linear algebra teachers. 
 
The main body of this paper is split into two parts:  the first part is the theory related to the 
SVD, and the second part covers some of its applications.  In the theory part we will cover some 
important definitions related to the SVD, and compare the SVD of a matrix A with the 
eigenvalue decomposition of ATA, which results in a degree of uniqueness for the SVD.  
Following that we define show how to analytically calculate SVD.  The application part of this 
paper covers how the SVD is used to calculate linear least squares, and how to compress data 
using reduced rank approximations. 
 

The SVD 
 

Some definitions: 
 
Let A be an m by n matrix.  Then the SVD of A is A = UΣVT where U is m by m, V is n by n, and Σ is 
an m by n diagonal matrix where the diagonal entries Σii = σi are nonnegative, and are arranged 
in non-increasing order.  The positive diagonal entries are called the singular values of A.  The 
columns of U are called the left singular vectors for A, and the columns of V are called the right 
singular values for A. 
 
The outer product of the vectors x and y is xyT.  Note that x and y do not have to be of the same 
length, and that the outer product is a matrix.  In particular, it is a matrix of rank one as each 
column is linearly dependent on x. 
 
Let X be an m by k matrix, and Y a k by n matrix.  The outer product expansion of two matrices 
X and Y is 

   ∑    
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where xi are the columns of X and yi
T are the rows of Y. 

 
The outer product expansion of the SVD is given by   

  ∑      
 

 

   

 

where ui and vi are the columns of U and V respectively, and k is the number of non-trivial 
singular values of A. 
 
The Frobenius norm |X| of a matrix X is the square root of the sum of the squares of its entries.  
Note that this coincides with the 2-norm of a column vector. 
 
Define the inner product of two matrices to be     ∑         , so | |      as usual. 
 
Some Results: 
 
The SVD and the eigenvalue decomposition are similar and closely related.  The SVD of A can be 
used to determine the eigenvalue decomposition (which will hence be referred to as the EVD) 
of ATA.  In particular, the right singular vectors of A are the eigenvectors of ATA, and the singular 
values of A are equal to the square roots of the eigenvalues of ATA.  It also turns out that the 
left singular vectors of A are the eigenvectors of AAT.  This shows that if the SVD of A is A = 
UΣVT, U and V are uniquely determined except for orthogonal basis transformations in the 
eigenspaces of ATA and AAT.  Kalman also shows that the EVD and the SVD are the same for a 
square and symmetric matrix, except that the singular values are actually the absolute values of 
the eigenvalues. 
 
How to analytically calculate a SVD of a matrix: 
If A is an m by n matrix, then it can be expressed as UΣVT.  V is the matrix such that ATA = VDVT 
with the diagonal entries of D arranged in non-increasing order.  The nonzero entries of Σ are 
equal to the square roots of the corresponding entries of D.  U is made up of the non-vanishing 
normalized columns of AV extended to an orthonormal basis in Rm.  This results in V and U 
being orthogonal matrices. 
 
Proof:  First off, we will find an orthonormal basis for Rn such that its image under A is 
orthogonal.   Let A be of rank k such that k is less than n.  Let ATA = VDVT be the EVD of ATA with 
the diagonal entries λi of D be arranged in non-increasing order, and the columns of V be the 
orthonormal basis {v1, v2, …, vn} since symmetric matrices have orthogonal eigenvectors.  Then  

        (   )
 (   )    

         
 (    )          

so the we clearly have an orthonormal basis for Rn with an orthogonal image.  Also, the nonzero 
vectors in this image set form a basis for the range of A. 
 We have V, so next we will normalize the vectors Avi to form U.  If i = j in the equation 
above, we get |Avi|

2 = λi.  Then λi ≥ 0 so, since they were assumed to be in non-increasing 
order, λ1 ≥ λ2 ≥ … ≥ λk ≥ 0 and λi is zero for all i greater than k because k is the rank of A.  With 
this we have an orthonormal basis for the range of A defined as  
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|   |
 

 

√  

              

Extend this to an orthonormal basis in Rm if k < m. 
 Now all that is left is to determine Σ, and then show that we have the SVD of A.  Set 

      .  Then by the equation above, we have          for all i ≤ k.  Putting the vi together 
as the columns of a matrix V and the ui together as the columns of a matrix U we get      , 
where Σ has the same size as A, its diagonal entries are σi and the rest are zero.  Multiplying 
both sides of       by VT gives us       , which is the SVD of A.     
 

Applications 
 

It should be noted that part of what makes the SVD so useful are the efficient and accurate 
algorithms for computing it.  However, this paper is not about that so, like Kalman, we will 
assume that we have a good algorithm for computing the SVD and just focus on its applications.  
However, before going over the main applications of the SVD in his paper, Kalman briefly 
describes these three other applications. 
 
Computing the EVD of the matrix product ATA is sometimes of interest, but can be prone to a 
loss of accuracy.  However, the SVD can be computed reliably directly from A, and the right 
singular values of A are the eigenvectors of ATA and the squares of the singular values of A are 
the eigenvalues of ATA.  Thus the SVD can be used to accurately determine the EVD of the 
matrix product ATA. 
 
Effective rank estimation is another application of the SVD.  The SVD of a matrix can be used to 
numerically estimate the effective rank of a matrix.  In the case that the columns of a matrix A 
represent data the measurement error from obtaining the data can make a matrix seem to be 
of greater rank than it really should be.  By only looking at the singular values of A greater than 
the measurement error we can determine the effective rank of A. 
 
The third application is just briefly mentioned, and is that the SVD can be used in computing 
what is called the generalized inverse of a matrix.  Now we move to the first main application. 
 

Linear Least Squares 
 
This kind of problem comes up for a variety of reasons, but can be quickly summarized as:  we 
want to approximate a vector b as closely as we can with a linear combination of the vectors in 
the finite set {a1, a2, … , an,}.  Written as an expression, we want xT = [x1, x2, … , xn,] such that  

|  ∑    

 

   

| 

is minimized.  Let A be the m by n matrix with columns ai. 
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There is a nice way of doing this problem analytically without the SVD, but it behaves poorly 
when implemented on a computer, and this is a paper about the SVD.  Let the SVD of A be 
UΣVT.  Then we have 
      ∑     

 
                 

        (    )   (   ) 
        (    ) 
where y = VTx and c = UTb.  U is an orthogonal matrix so | (    )|  |    |, and thus 
|    |  |    |.  This shows that solving for y will be equivalent to solving for x once we 
know the SVD of A.  But we already know the SVD of A is UΣVT so this will be easy. 
 
We want y to minimize |    |.  Let the nonzero diagonal entries of Σ be σi for 1 ≤ i ≤ k for k 
equal to the rank of A.  Then  

(  )                     
So 

(    )                                        
With a glance we can determine that        ⁄  for 1 ≤ i ≤ k and vanishes for other i minimizes 
|    |, which then equals  

[ ∑   
 

 

     

]

   

 

This is the error left of the least squares approximation, which goes to zero when k equals m.  
To determine the actual error we need to know ci, but we already do as we defined c as equal 
to UTb.  In the interest of writing x nicely in terms of b and the SVD of A, define    to be the 
transpose of   with its nonzero entries inverted.  Then      .  Thus we get the solution 

         
 
Although Kalman provides a detailed but fairly simple example of implementing this method of 
least squares approximation using MATLAB, we will skip it and move on to the other main 
application of the SVD that Kalman covers. 
 
Reduced Rank Approximations and Data Compression Using the SVD 
 
Think of an m by n matrix A as just a matrix of numerical data, not a transformation.  A is just an 
organized collection of mn numbers.  In real applications m and n can be very large, so we are 
interested in finding an approximation that represents just the most significant features of A. 
 
The rank of a matrix is the number of linearly independent columns (or rows) it has, and so rank 
can be thought of as a measure of redundancy.  Particularly that lower rank corresponds to lots 
of redundancy, and high rank corresponds to lower redundancy.  A low rank matrix can be 
represented more efficiently than a high rank matrix.  In the case of a rank one matrix B, the 
columns are all multiples of each other.  If u is a single column of B, then let the coefficients vi 
be such that the ith column of B can be written as uvi.  Then                      .   
Thus we need only m + n numbers to represent B. 
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Let UΣVT be the SVD of A.  Then   ∑       
  

   
 is the outer product expansion of the SVD of 

A.  It should be noted that the       
  are all rank one m by n matrices.  We want to show that 

         
  is the best rank one approximation of A. 

 
Theorem:           

  is the best rank one approximation of A as long as σ1 is distinct. 
 
Proof:  First, we need to show some things about matrix inner products.  For rank one matrices 
xyT and uvT the matrix inner product is 

        ∑        

 

∑(   )     (   )(   )

 

 

If xi are the columns of X and yi
T are the rows of Y, and the outer product expansion    

∑     
 

 , then  

      ∑(     )(     )

  

 ∑|  |
 |  |

 

 

 ∑(     )(     )

   

 

If X is orthogonal, then 

|  |  ∑|  |
 |  |

 

 

 

If xi are also all of unit length, then 

|  |  ∑|  |
 

 

 | |  

Similar conclusions can be drawn if Y is orthogonal.  This has shown that multiplying by an 

orthogonal matrix does not change the norm of a matrix.  Thus | |  ∑|      
 |

 
 ∑  

    We 

can partition this sum as | |  |  |
  |  |

 , where Sr is the sum of the first r terms, and Er is 
the sum of the remaining terms. 

 We now want to show that   
      

  is the smallest possible error.  Let UΣVT be the 
SVD of A.  Since the Frobenius norm is preserved for any rank one matric A1, we have 
|    |  |       |  |       |.  Rewrite       as      where α is positive, 
     and     .  Next, by the properties of the matrix inner product: 

|      |  | |             
Now for some estimates on the last term: 

      ∑      

 

   

 

 ∑  |  ||  |

 

   

 

   ∑|  ||  |

 

   

 

By the Cauchy-Schwarz inequality, ∑ |  ||  |
 
    ∑ |  |  ∑ |  |

 
   

 

   
 | || |   .  Thus 

        . 
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 Getting back to where we were, we now see |      |  | |          
| |  (    )

    
 .  Clearly, we can minimize the right-hand side by setting α equal to σ1, 

then |      |  | |    
 .  Note that this minimum is only obtained when |  | = |  | = 1 

and α is equal to σ1.  Then              (   )(   )
        

 .     
 

It turns out that    ∑       
  

   
 defines a rank r matrix that is the best rank r approximation 

to A, and its error is         ∑       
  

   
 with |  |

  ∑   
  

     
.  However Kalman 

just gives a couple of references to the proof.  When implementing the SVD in practice it can be 
used to choose the rank r with which to approximate a matrix.  This typically based on 
requirements on relative error.  The relative error of the SVD outer product expansion is  

|  |

| |
 √

∑   
  

     

∑   
  

   

 

 
Some Examples: 
 
Although Kalman uses an example in his paper of image compression, the example features 
only one image being compressed and it is very simple.  Here we will go over multiple images to 
show how adaptable the SVD is, and how visible image qualities can be affected by 
compression. 
 
Here are three images that will be used as examples: 
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Let us call these images in order:  eye, tree, and nope.  These pictures are all black and white to 
simplify the MATLAB code used to compress these images.  The code used will be put at the 
end of this section. 
 
Here are the sizes in pixels of each image:  eye is 168 by 280 pixels, tree is 599 by 900 pixels, 
and nope is 1500 by 1050 pixels.  As you can see right away, the images have much different 
sizes, but the SVD can be easily implemented even so.  Here are the first fifteen singular values 
for our images followed by the images compressed to within an accuracy threshold of 25%: 
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Eye:  106.8590, 27.1434, 18.0849, 15.1460, 14.9499, 12.1669, 11.0146, 8.6290, 8.1337, 7.4696,  
6.4867, 6.2537, 5.8443, 5.1062, 5.0424 
Tree:  399.9686, 75.1662, 42.1528, 39.5619, 22.1923, 20.8705, 18.9550, 17.4170, 14.3010, 
13.7155, 12.3462, 10.9162, 10.1470, 9.9213, 9.3591 
Nope:    873.8819, 217.7515, 183.9686, 170.7199, 159.5952, 140.5849, 113.6305, 106.1437,  
94.3424, 92.9146, 86.6377, 70.3212, 63.1933, 59.7077, 52.8584. 
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The 25% accuracy threshold means that the error is at most 75%, but even so we can still get 
the gist of the compressed images.  It should also be noted that none of these images used 
their 14th or 15th singular value to display these compressed images, and that the first singular 
value is much larger than the rest.  The next set of images is for an accuracy threshold of 75%.  
As we can see, they look pretty spiffy.  This time around eye kept 101 singular values, tree kept 
276, and nope kept 362.  Comparatively, nope is throwing away a higher fraction (roughly two-
thirds) of its singular values than tree and especially eye (just over one-third).  This likely due to 
nope having a simpler design compared to its size, while eye has lots of fine detail but a small 
size. 
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It should be mentioned here as Kalman did as well, that the reduced rank approximations using 
the SVD and Fourier analysis work in similar ways.  Fourier analysis is used a lot in signal 
analysis, and is also used in data compression.  However, the SVD finds the best possible basis 
for a given rank, while Fourier analysis always uses the same basis regardless of the rank. 
 
This is the MATLAB code used to do the image compression: 
 
%loads the image that will be compressed. 
imageRaw = imread('eye.jpg'); 

  
%converts the image to grayscale. 
image2 = rgb2gray(imageRaw); 
%converts the image from uint8 to double. 
image3 = im2double(image2); 
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%displays image3. 
imshow(image3); 

  
%calculates SVD of image3. 
[U,S,V] = svd(image3); 

  
%calculate |image3| 
absIm = sqrt(sum(diag(S))); 
%relative error. 
relErr = 1; 

  
%R will be the reduced rank matrix of S. 
R = zeros(size(S,1), size(S,2)); 
%sets the diagonal entries of R to the singular 
%values of image3 to get a reduced rank approximation. 
i = 1; 
while relErr > 0.75     %keeps executing the loop 
    R(i,i) = S(i,i);    %until the relative error gets 
    i = i + 1;          %low enough. 
    %calculates the relative error. 
    relErr = sqrt(sum(diag(S - R))) / absIm; 
end 

  
%recreates the image from the reduced 
%rank SVD. 
A = U*R*V'; 
%display A. 
imshow(A); 
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