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1 Introduction

Lie theory, initially developed by Sophus Lie, is a fundamental part of math-
ematics. The areas it touches contain classical, differential, and algebraic
geometry, topology, ordinary and partial differential equations, complex anal-
ysis and ect. And it is also an essential chapter of contemporary mathemat-
ics. A development of it is the Uniformization Theorem for Riemann surface.
The final proof of such theorem is the invention from Einstein to the special
theory of relativity and the Lorentz transformation. The application of Lie
thoery is astonishing. In this paper, we are going to follow the work by Roger
Howe to show the essential phenomenon of the theory that Lie groups G may
be associated naturally by it Lie algebra g. And we will go through the proof
of the fact that Lie group G is determined by ¢ and its Lie bracket. And
g is a vector space which is endowed with a bilinear nonassociative product
called the Lie bracket. GG is a complicated nonlinear object. Thus for many
purposes we can replace G with g.

2 Background

2.1 Homeomorphism Groups

In this section, we will introduce some basic background of hemeomorphism
group. Let X be a set, A group is the collection Bi(X) of bijections from
X to itself. Then the set Hm(X) of homeomorphisms from X to itself is a
subgroup of Bi(X). Then let G be a group, if the topology of it satisfies,
(i) The multiplicaiton map (g1, g2) — g192 from G x G should be contin-
uous;
(ii) the inverse map g — ¢~' from G to G should be continuous,



then the topology on G is called a group topology. And a group endowed
with a group topology is called a topological group.

Define )\, is the left-translation by g, and p, is the right-translation by g.

LEMMA 1. Let G be a topological group, and g € G.

(a) the map A\;: G — G is a homeomorphism. Similarly, p,: G — G is a
homeomorphism.

(b) If U C G is a neighborhood of the identity 1 of G, then gU and gU
are heighborhood of ¢g. Similarly if V' C G is a neighborhood of g, then g~V
and Vg~! are neighborhoods of 1¢.

COROLLARY 2. A group topology is determined by its system of
neighborhood of the identity.

LEMMA 3. A homogeneous topology on a group G is a group topology
if and only if the system of neighborhoods of 14 satisfies conditions (a) and
(b) below.

(a) If U is a neighborhood of 14, there is another neighborhood V of 14
such that V C U~!, where

Ut={gtgel}

(b) If U is a neighborhood of 1, there are other neighborhoods V', W of
1g such that VW C U, where

VW ={gh:ge VheW}

Now we would like to make Hm(X) into a topological group. By Corol-
lary 2, we can only define neighborhoods of the identity map 1x on X for
the definition of the topology on Hm(X). And by Lemma 3, we know that
what we must check to know our definition yields a group topology.

Then, let X be a locally compact Hausdorff space. Let C' C X be com-
pact, and let O C C' be open. Define

U(C,0) ={h € Hm(X):h(C) C O, *(C) € O}

If {C;}, 1 < i< n, are compact subsets of X, and {O;} are open subsets
of X such that C; C O, set
(2.1)

U{CiHO}) = N U(C, 00)
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DEFINITION. Let X be a locally compact Hausdorff space. The
compact-open topology on Hm(X) is the homogeneous topology such that
a base for the neighborhoods of 1x consists of the sets U({C;},{0;}) of
equation (2.1).

PROPOSITION 4. The compact-open topology on Hm(X) is a Haus-
dorff group topology.

2.2  One-Parameter Groups Flow and Differential Equa-
tions

The basic object mediating between Lie groups and Lie algebras is the one-
parameter group. A Lie group is a very coherent system of one-parameter
groups. In this section, we will define one-parameter group in a general
context.

DEFINITION. A one-parameter group of homeomorphisms of (the loc-
caly compact Hausdorff space) X is a continuous homomorphism

o:R — Hm(X)

Denotes the image under ¢ of t by ¢, then {¢,} is a family of homeomor-
phisms of X satisfying the rule

PropYs = pis 1,5 ER

Let ¢; be a one-parameter group of homeomorphisms of X, we can define
a map
(2.2)
R x X — X,

¢(t7 :U) = ¢t<x>
t — ¢, is a homomorphism is captured by the identities
(2.3)
(i) ¢(0,2) ==,

(i) ¢(s,0(t,x)) = ¢(s + 1, x).
LEMMA 6. Let 9: R x X — X be a map. Fort € R, define p;: X — X
by (2.2) (ii). Then {,} is a one-parameter group of homeomorphisms if and

only if
(a) ¢ satisfies identities(2.3) and
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(b) ¢ is continuous.

LEMMA 7. Let o:G — H be a homomorphism between topological
groups.Then ¢ is continuous if and only if ¢ is continuous at 1.

By the map we define in (2.2), if we make z fixed and let ¢ vary, then
the map t — ¢(t,x) = ¢;(x) defines a continuous curve in X. That is, as
t varies, each point of x moves continuously inside X, and various points
move in a coherent fashion. Thus one-parameter group of homeomorphisms
of X is also be called a flow of X. And the notion of flow is closely related
to the theory of differential equations. I am going to skip the details here.
Conclusively, the notion of one-parameter group gives us a geometric way of
looking at the solutions of a system of ordinary differential equations. And
it also provides a link between ordinary differential equations and Lie groups
and Lie algebras.

3 Omne-Parameter Groups of Linear Transfor-
mation

Lie algebras are vector spaces. In order to show the relationship between
Lie group and Lie algebra, we are going to show how one-parameter groups
of linear transformations of a vector space can be described by using the
exponential map on matrices first.

Let V be a finite dimensional real vector space, End(V) be the algebra
of linear maps from V' to itself, and GL(V') be the group of invertible linear
maps from V to itself. We usually call GL(V') the general linear group of V.

DEFINITION. A one-parameter group of linear transformations of V'
is a continuous homomorphism

M:R — GL(V).
M (t) is a collection of linear maps such that
(i) M(0) = 1y,the identity of V,

(i1) M(s)M(t)=M(s+t) s,t €R,
(131) M(t) depends continuously on t.



For A € End(V), define
o ATL

T
n=0 n:

exp(A) =

PROPOSITION 8. If A and B in End(V') commute with each other,
then
exp(A+ B) = expAexpB.

COROLLORY 9. For any A € End(V), the map t — exp(tA) is a
one-parameter group of linear transformations on V. In particular exp(A) €
GL(V)and(exp(A))~! = exp(—A).

THEOREM 10. Every one-parameter group M of linear transforma-
tions of V' has the form
M(t) = exp(tA)

for some A € End(V).

4 Properties of the Exponential Map

As we shown in last section, the map exp is the basic link between End(V)
and GL(V'). Now we are going to describe some properties of this link.

For A, B € End(V), write
[A, B = AB — BA.
The quantity [A, B] is called the commutator or Lie bracket of A and B,

PROPOSITION 13. Suppose A, B, C' have norm at most 1/2 and
satisfy equation(4.1). Then we have

1
O=A+B+§[A,B]+S,

where the reminder term S satisfies

IS < 65(1 Al + [1BI)*.

PROPOSITION 14. (Trotter Product Formula). For A, B € End(V),
one has
exp(A+ B) = lim (exp(A/fn)exp(B/n))".
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PROPOSITION 15. (Commutator formula) For A, B € End(V'), one
has

exp[A, B] = lim (exp(A/n)exp(B/n)exp(—A/n)exp(—B/n))™

= Jixn (eap(A/n): eap(B/m))"

There is one further concept involving the exponential map. And it in-
volves conjugation.

For g, h are elements of a group, then the group commutator of g and h,
written (g: h), is the expression

(9:h) = ghg™'h™".
For g € GL(V) and T' € EndV, we can form the conjugate

Adg(A) = gAg™".

PROPOSITION 16. (i)Adg(aA+bB) = aAdg(A)+bAdg(B)forA, B €
End(V); a,b € R; and g € GL(V).

(1) Adg(AB) = Adg(A)Adg(B).

for (iii): Adglg2(A) = Adgl(Adg2(A)), implies in particular that if
exp(tA) is one parameter subgroup of GL(V'), then Adexp(tA) is a one-
parameter groups of linear transformations on EndV. Hence Adexp(tA) has
infinitesimal generator A € End(EndV).

Then if we define
adA: EndV € EndV,

by
adA(B) = [A, B].

we have,

PROPOSITION 17. For A € End(V)

Ad(expA) = exp(adA).



5 The Lie Algebra of a Matrix Group

A matriz group is a closed subgroup of GL(V') for some vector space V. In
this section, we will show a matrix group is a Lie group. And also shows that
every matrix group can be associated to a Lie algebra which is related to its
group in a close and precise way.

First, we need to define Lie algebra.

DEFINITION. A real Lie algebra g is a real vector space equipped with
a product
Ll:gxg—g

satisfying the identities
(i) (Bilinearity).For a,b€ R and x,y,z € g,

laz + by, 2] = alw, 2] + by, ]
(2,0 + by = alz, 2] + bz, .
(17) (skew symmetry).For z,y € g,

[xvy] = _[y’ 93]
(1ii) (Jacobi Identity).For xz,y,z € g,

[z, [y, 2]] + [2, [, y]] + [y, [z, z]] = 0.

Then, we come to our main statement.

THEOREM 17. (a) The the Lie algebra g of a matrix group G is a Lie
algebra. (b) The map exp: g — G maps a neighborhood of 0 in g bijectively
onto a neighborhood of 1, in G.

It provides a geometric picture of the relation between Lie algebra and
Lie group. If a one-parameter group exp(tA) is regarded as a curve inside
the vector space End(V'), then this curve passes through the identity 1y at
time ¢t = 0. By differentiating the formula for exp(tA), we see the tangent
vector at the point 1y to this curve is just A. Thus g consists of all tangent
vectors to the curves defined by one-parameter groups in G.

But it also asserts that these tangent vectors actually fill out some linear
subspace g of End(V). Then, G is shown to be a smooth multidimensional
surface inside End(V'), and g is its tangent space at the point 1y .

In order to prove Theorem 17, we need another technical result.



LEMMA 18. Suppose A, is a sequence in exp (@), and ||A,| — O.
Let s, be a sequence of real numbers. Then any cluster point of s, A, is in

g.

Now we can do the proof.

Proof of Theorem 17. First, we need to show g is a subspace of End(V).
By definition, ¢ is closed under scalar multiplication, then we need to prove
that g is also closed under addition. Take A, B € g, by Proposition 14, for n
is large enough,

exp(A/n)exp(B/n) = exp(Cy),

where ||Cy]| — 0, and nC,, - A+ B. Then A + B € g by Lemma 18.
Secondly, we need to show [A, B] € g if A, B € g. By Proposition 15, for n
is large enough,
(exp(A/n): exp(B/n)) = expkE,
with E, — 0 and n?E, — [A, B]. Then [A, B] € g by Lemma 18. This
proves the part (a) of Theorem 17.
g is a linear subspace of End(V). Let Y C End(V) be a complementary

subspace of g, then End(V) = ¢g@ Y. Then let p; and p, be the projections
of End(V) on g and Y, define a map E: End(V) — GL(V) by

E(A) = exp(pi(A))exp(pz(A)).

then, we have

S erp(p (1A erp(ma(tA))| = pa(A) +pa(4) = A

by Proposition 13. This computation says that the differential of £ at 0
is the identity map on End(V'), thus, by the Inverse Function Theorem, F
takes small neighborhoods of 0 to neighborhoods of 1y bijectively. Select a
small ball B.(0) C End(V), and suppose exp(B,.(0)(Ng) does not cover a
neighborhood of 1y in G. Then we can find a sequence B, € exp~(G) such
B, — 0, but B, ¢ g. Then when B, is close enough to 0, we may write

expB, = E(A,)
for some A,,. Then, we will have A,, — 0 as B,, — 0. Then

exp(pa(Ay)) = exp(p1(A,)) texpB,

is also in G and is not zero. Since A,, — 0, then py(A,) — 0. The sequence
lp2(An)]|~ p2(Ay) will have cluster points, by Lemma 18 there must be in g.
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Since po(An) € Y, so all cluster points must be in Y. This contradicts that
Y was supposed to be the complementary to g. Thus this concludes the part
(b) of Theorem 17.

The second essentail feature of ¢ is its natural.
Let g and h be real lie algebra. A homomorphism from ¢ to h is a linear
map
L:g—h

satifying
L([z,y]) = [Lz, Ly] =,y €g

Let V', U be real vector spaces.

THEOREM 19. Let G € GL(V) be a matrix group with Lie algebra
g. let ¢:G — GL(U) be a continuous homomorphism. Then there is a
homomorphism of Lie algebras

do: g — EndU

such (3.1)
exp(dp(A) = pexp(A)))

Proof. 1f A € g, the exp(tA) is a one-parameter subgroup of G, thus
¢(exp(tA)) is a one-parameter subgroup of ¢(G) C GL(U). Then by Theo-
rem 10, we may write

o(exp(tA)) = exp(tB)
for some B € End(U). Then if we define

the equation (3.1) will be satisfied. To prove this theorem, it suffices to show
that d¢ is a homomorphism of Lie algebras, and this follows from Propositions
14 and 15 which show that the Lie algebra operations in ¢ are determined
by operations in G.

Then an consequence of Theorem 19 leads to the next corollary,

COROLLARY 20. If G; € GL(V) and Gy € GL(U) are isomorphic
matrix groups, then their Lie algebras g; and go are isomorphic as Lie alge-
bras.



6 Conclusion

We have shown that for each matrix group G, which can be realized by
Lie group, there is a Lie algebra g can be associated to it in a close and
natural way. And the connection between these two can be held via one
parameter groups and the exponentail map. These results we have proved
consist an essentail part of the foundation of Lie theory. But we have omitted
from the standard accout. First of all, we have dealt with Lie groups as
subgroups of a standard alnguage of differential manifold instead of treaing
them as abstract things in themselves. For the next, we haven’t shown
the relationship between Lie groups and their Lie algebras completely. For
instance, we haven’t got a chance to attach a group to every Lie subalgebra
of End(V).

As Roger mentions at the begining of the article, Lie theory is poorly
known in comprison to its importance. And Lie theory hasn’t been pene-
trated into undergraduate curriculum and graduate programs. So at the end
Roger gives some examples of the relations between the Lie theory and the
standard curriculum. For example, the theory of Fourier series and Fourier
transform is best understood group-theoretically.
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