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Abstract

This work aims to explore several areas of mathematical physics, focusing on the
Dirac Delta Function, Fourier Transforms between conjugate spaces, the Green’s Func-
tion method of solving partial differential equations, and time-dependent electrody-
namics. These topics are explored in the context of the Wave, Helmholtz, and Poisson
equations which are shown to be very closely related by Fourier Transform and have
very similar Green’s Functions. This paper culminates with the application of such
explorations to computing the electric field generated by a high energy, relativistic
charged particle. Such a calculation is immediately applicable to experiemtns such as
the Electron Energy Loss Spectroscopy Experiment, a relatively new experiment which
studies plasmonic excitations generated by a swift electron interacting with the elec-
tron cloud of a nanometal. I am currently studying this experiment from a theoretical
chemistry perspective and am using the results of this work to computationally model
said excitations.
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1 Introduction

1.1 The Dirac Delta Function

The Dirac delta function, denoted δ(x− x′), is a commonly-used tool in Physics. The first
thing to note about the that Dirac delta function is that it is not a function at all. A
function is a rule that assigns another number to each number in a set. The delta function,
as used in physics, is instead a shorthand for a rather compicated limiting process whose
use greatly simplifies calcuations.

Defintion: The delta ‘function’ δ(x− x′) is such that for any other function f : R→ R
ˆ ∞
−∞

f(x′)δ(x′ − x) dx′ = f(x)

A special case of this is when f is identically 1, giving
ˆ ∞
−∞

δ(x′ − x) dx = 1

The delta function is best thought of as a functional, something that takes a function
to a value. In the above examples, the delta ‘plucks out’ the value of f at x from under an
integral.

Example: d
dx is an operator, as it takes a function to another function (some-

times to a constant function, but a fuction nontheless). d
dx

∣∣
x=0

is a functional, as it
evaluates a function at a point. Similarly, the delta ‘function’ maps a function f to
a single value.

ˆ ∞
−∞

(x3 − x2 − 1)δ(2− x) dx = 23 − 22 − 1 = 3

The above discussion may lead you to wonder how such a ‘function’ can possibly be
defined. Indeed, δ(x′ − x) is better thought of as shorthand for the limit of a sequence of
normalized functions δn(x) that satisfy

lim
n→0

δn(x′ − x) = 0 for all x 6= x′

lim
n→0

ˆ ∞
−∞

f(x′)δn(x′ − x) dx′ = f(x′) for all x 6= x′

As an example, consider a sequence of functions defined by

δn(x′ − x) =

{
1
n for |x′ − x| ≤ n

2

0 for |x′ − x| > n
2

Notice that each δn satisfies
´∞
−∞ δn(x′ − x) = 1, therefore limn→0

´∞
−∞ δn(x′ − x) exists

and equals 1. Also notice that this sequence of functions satisfies the above properties of
the delta function:

lim
n→0

ˆ ∞
∞

f(x′)δn(x′ − x) dx′ = lim
n→0

ˆ x′+ n
2

x′−n
2

f(x′)δn(x′ − x) dx′ = lim
n→0

1

n

ˆ x′+ n
2

x′−n
2

f(x′) dx′

By the mean value theorem of integrals, there exists a c ∈
[
−n2 ,

n
2

]
such that

´ x′+n/2

x′−n/2 f(x′) dx′ =

f(x′ + c)
(
x′ + n

2 − x
′ + n

2

)
= nf(c). Therefore we have:

lim
n→0

1

n

ˆ x′+ n
2

x′−n
2

f(x′) dx′ = lim
n→0

f(x′ + c)
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As n→ 0, c is squeezed to 0, giving the final result

lim
n→0

ˆ ∞
∞

f(x′)δn(x′ − x) dx′ = f(x′)

In this paper, the symbol δ(x−x′) will refer to the above limit of a sequence of functions:
δ(x′ − x) = limn→0 δn(x′ − x). There are many other, equivalent ways to define the Dirac
delta, some of which are pictured below:

Figure 1: Delta function as the limit of the Gaussian (4πα)−1/2e−x
2/4α as α→ 0

Figure 2: Delta function as the limit of ε
π(x2+ε2) as ε→ 0
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Figure 3: Delta function as the limit of the sinc function sin νx
πx as ν →∞

The results of this discussion are generalizable to multiple dimensions, where the multi-
dimensional Dirac delta δ(x′ − x) = limn→0 δn(x′ − x) has the properties

lim
n→0

δn(x′ − x) = 0 for all x 6= x′

lim
n→0

ˆ
S

f(x′)δn(x′ − x) dx′ = f(x′) for all x 6= x′

1.2 Green’s Functions

Green’s Functions are an ingenious approach to solving ordinary and partial differential
equations. Consider a linear differential operator L, and two bounded function f(x) and
y(x) such that

Ly(x) = f(x)

Definition: The Green’s Function of the operator L is defined as the function G(x, x′)
such that

LG(x, x′) = δ(x′ − x)

The Green’s function of an operator is unique given that the problem is well posed (given
sufficent boundary conditions). A more complete statement and proof of the uniqueness of
Green’s Functions can be found in Barton, pages 201-202 [?].

Now let’s turn to a general methodology for determining Green’s functions. Although
rarely used in practice, this method is an excellent way to better understand Green’s Func-
tions. Suppose that L possess a complete, (possibly infinite) orthonormal set of eigenfunc-
tions {φn(x)} such that

Lφn(x) = λnφn(x)

This means that we can expand y(x) and f(x) onto this orthonormal set:

y(x) =

∞∑
n=1

αnφn(x)

f(x) =

∞∑
n=1

βnφn(x)
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Substituting back into the above equation yields

Ly = L

∞∑
n=1

αnφn(x) =

∞∑
n=1

αnLφn(x) =

∞∑
n=1

αnλnφn(x)

This must be equal to f(x), therefore

∞∑
n=1

αnλnφn(x) =

∞∑
n=1

βnφn(x)

Since the ψn’s are linearly independent, we have that

αnλn − βn = 0

αn =
βn
λn

Notice that this manipulation is only allowed if λn 6= 0. If indeed for some n λn = 0
then any solution we obtain for y(x) will not be unique, as we can add any multiple of φn
to it. For the sake of simplicity we will exclude this case.

We can think of the β’s as the projection of f onto the φ basis, ie βn = (ψn, f). This
lets us write

y(x) =

∞∑
n=1

1

λn
φn(x)(φn, f)

=

∞∑
n=1

1

λn
φn(x)

ˆ
φ∗n(x′)f(x′) dx′

=

ˆ ∞∑
n=1

φn(x)φ∗n(x′)

λn
f(x′) dx′

=

ˆ
G(x, x′)f(x′) dx′

Where we define

G(x, x′) ≡
∞∑
n=1

φn(x)φ∗n(x′)

λn

to be the Green’s function of the operator L. Notice that it is appropriate to associate
G with L (rather than with y or f) because G is a combination of the eigenfunctions and
eigenvalues of L.

Example: Consider the operator

L =
d2

dx2

for x ∈ [0, 1]. The normalized eigenfunctions of L that vanish at the endpoints are√
2 sin(nπx) (n ∈ N) with eigenvalues −n2π2. Thus the Green’s Function in this case

is

G(x, x′) =
2

π2

∞∑
n=1

sin(nπx) sin(nπx′)

n2

By the M-Test (comparison to 1
n2 ) the above series converges uniformly and ab-

solutely to a continuous function.
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The applications of Green’s Functions can be seen by oberving how the operator L
transforms G:

L(x)G(x, x′) =

∞∑
n=1

Lφn(x)φ∗n(x′)

λn
=

∞∑
n=1

φn(x)φ∗n(x) ≡ I(x, x′)

For any function f(x) we can write

ˆ
I(x, x′)f(x′) dx′ =

∞∑
n=1

φn(x)

ˆ
φn(x′)∗f(x′) dx′

=

∞∑
n=1

φn(x)(ψn, f)

But since the ψn’s are orthonormal, we can also write

ˆ
I(x, x′)f(x′) dx′ = f(x)

It is now clear that I(x, x′) satisfies the properties of the Dirac delta δ(x−x′), therefore
we may write

LG = δ(x− x′)

Multiplying both sides by f(x′) dx′ and integrating yields

ˆ
f(x′)L(x)G(x′, x) dx′ =

ˆ
f(x′)δ(x− x′) dx′

L(x)

ˆ
f(x′)G(x′, x) dx′ = f(x)

ˆ
f(x′)G(x′, x) dx′ = L−1(x)f(x)

Returning to our original problem, Ly = f , we see that finding the Green’s function is
tantamount to inverting L:

y = L−1f =

ˆ
G(x, x′)f(x′) dx′

Specific applications of Green’s Functions as a tool for solving partial differential equa-
tions can be found in Part 2.

1.3 Fourier Transforms

From now on we will restrict our discussion to three-dimentional functions, as these are
most relevant to Classical Mathematical Physics. The three-dimensional Fourier Transform
f̃ is defined as

f̃(k) =

ˆ
V

e−ik·xf(x) dx

And its inverse mapping is given by

f(x) =

ˆ
V

dk

(2π)3
eik·xf̃(k)

Notice that the Fourier transform maps a spatially-dependent function f(x) to a momentum-
dependent function f̃(k) (where k is the wave vector and is directly related to momentum
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and the propagation direction of the wave). We can write a similar transform to take a
time-dependent function into a frequency (energy) - dependent function:

f̃(ω) =

ˆ
τ

e−iωtf(t) dt

f(t) =

ˆ
τ

dω

2π
eiωtf̃(ω)

For a Fourier Transform to be possible, we say that f and f̃ must satisfy the Dirichlet
Conditions:

1. f and f̃ must be square-integrable.

2. f and f̃ must be single-valued.

3. f and f̃ must be piecewise continuous.

4. |f | and |f̃ | must be bounded. This last condition is considered “sufficent but not
necessary”. The dirac delta function, for instance, does not satisfy this property and
yet is considered to be transformable.

Since the Fourier functions are a complete set of expansion functions we demand that
a fourier transform from time to frequecy followed by a transfrom from frequency to time
must return the original function:

f(t) =

ˆ ∞
∞

dω

2π
eiωtf̃(ω) =

ˆ ∞
∞

dω

2π
eiωt
ˆ ∞
∞

dt′ e−iωt
′
f(t′) =

ˆ ∞
∞

dt′f(t′)

ˆ ∞
∞

dω

2π
eiω(t−t′)

This can only be true if

ˆ ∞
∞

dω

2π
eiω(t−t′) = 2πδ(t′ − t)

Therefore we see that the Fourier transform of a plane wave from frequency space to
time space yields a delta function (Bracewell 1999, pp. 74-75). In retrospect, this result is
very predictable. Since the Fourier transform can be thought of as a projection of a function
onto the space of plane waves, projecting a plane wave would yield a single, infintesimally
small peak in the fourier spectrum. For consistency, let’s convince ourselves that the Fourier
transform of a delta function gives back the original plane wave:

Example: Fourier transforming the delta function (f(t) = δ(t − t′)) from time
space to frequency space yields

f̃(ω) =

ˆ ∞
∞

dt′

2π
f(t) =

ˆ ∞
∞

dt′ e−iωtδ(t− t′) = e−iωt
′

One of the greatest uses of Fourier Transforms is in solve Partial and Ordinary Differetial
Equations. This applciation is made clear by the following theorem.

Theorem on Fourier Transforms The Fourier transform of the function drf
dtr is (−iα)r

times the Fourier transform of the function f(t) provided that the first (r− 1) derivatives of
f(t) vanish as t→ ±∞ (this is true for all reasonable physical applications).

Proof: Consider the Fourier transform of drf
dtr , where F (ω) is the Fourier transform of

f(t): ˆ ∞
−∞

drf

dtr
e−ωtdt = F (r)(ω)
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Integrating the left hand side by parts (u = eiωt and dv = drf
dtr dt) yields

dr−1f

dtr−1
eiωt

∣∣∣∣∣
∞

−∞

−
ˆ ∞
−∞

dr−1f

dtr−1
(iω)eiωt

Using our assumption that the derivative does to 0 as t→∞, the above simplifies to

−iω
ˆ ∞
−∞

dr−1f

dtr−1
eiωt = −iωF (r−1)(ω)

Therefore we have
F (r)(ω) = −iωF (r−1)(ω)

Applying the same procedure another r− 1 times (each time using the assumption that
the derivative goes to 0 at ∞) we find that

F (r)(ω) = (−iω)rF (ω)

�
This theorem will be used repeatedly in solving linear differential equations in Section

3.

1.4 Electrodynamics

It is impossible to give the extensive field of electrodynamics justice in the span of a few
pages, but in this section my goal is to introduce some of the terminology and key formulas
that arise as a result of electrodynamics. For a more detailed consider the relatively simple
text Introduction to Electrodynamics by David Griffiths [?] or the more advanced Classical
Electrodynamics by John David Jackson [?].

An electric field E is a vector field depciting the force of attraction due to a charge
distributions ρ. The magnetic field B is a vector field that represents the torque acted on a
charge by a moving charge distribution, known as a current. In many models we consider
our charge distribution ρ to be distributed in a vacuum, where the dielectric constant ε
is 1 (in the natural unit of measurement). In general the dielectric constant is the relative
electric permeability of material - how well an electric field ‘travels’ through the material,
and is measured relative to the permeability of vacuum.

To deal with the different behavior of electric fields in a dielectric, a material with
polarizable molecules (basically anything but vacuum), we introduce the displacement D =
εE, where ε is the relative permeability of the dielectric. Analogously to electric permeability
there is also magnetic permativity µ, measured relative to the permativity of vacuum,
such that in vacuum µ = 1 . Similarly to permeability, in non-vaccum spaces we use B = µH
(notice that this seems backwards to the D = εE) definition.

Now that we have defined some terminology, we can look at the famous Maxwell Equa-
tions. Maxwell’s four equations each have their own names, and I will refer to these names
in Section 3.

Gauss’s Law:
∇ ·E = ρ ∇ ·D = ρf

Where ρf is the free (non-induced charge). Only the equation on the left will be used in
this paper - so the relation of ρf to ρ is not crucial to ones understanding of this text.

Gauss’s Law for Magnetism:

∇ ·B = 0
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Faraday’s Law:

∇×E = −∂B

∂t

Ampere’s Law:

∇×B = J +
∂E

∂t
∇×H = Jf +

∂D

∂t

Where J is the current density (similar to electric flux) and Jf is the free electron
density. Here, again, we are only interested in the left equation. Maxwell’s Equations are
also commonly written in integral form, and although this paper will only use the differential
forms above, integral forms are included below for completness.

‹
∂Ω

E · dS = Q(Ω)

‹
∂Ω

D · dS = Qf (Ω)

‹
B · SdΩ = 0

˛
∂Σ

E · dl = −
‹

Σ

∂B

∂t
· dS

˛
∂Σ

B · dl = I +

‹
Σ

∂E

∂t
· dS

˛
∂Σ

H · dl = If +

‹
Σ

∂E

∂t
· dS

Q(V ) represents the total charge enclosed inside the volume Ω, Qf (Ω) is the total free
charge in volumne Ω, and I is the electric current. Most important to our discussion will
be the differential forms of Faradays and Ampere’s Laws.

2 Some Important Green’s Functions

2.1 The Wave Equation

The wave equation occurs frequently throughout physics (with the proper choice of gauge,
Maxwell’s Equations all become a single wave equation):

−�ψ(x, t) = −
{
∇2 +

1

v2

d2

dt2

}
ψ(x, t) = ρ(x, t)

Our goal is to find the Green’s Function of the d’Alembertian operator �: we want to
find the G such that

�G(x− x′, t− t′) = δ(x− x′)δ(t− t′)
Rather than working with the rather complicated d’Alembertian, consider taking the

Fourier transform from time to frequency:
ˆ ∞
∞

d(t′− t)eiω(t′−t)(∇2− 1

v2

∂2

∂t2
)G(x−x′, t− t′) =

ˆ ∞
∞

d(t′− t)eiω(t′−t)δ(x′−x)δ(t′− t)

By our theorem on Fourier Transforms (Section 1.3) the above simplifies to(
∇2 − 1

v2
(iω2)

)
G̃(x− x′, ω) = δ(x′ − x)

Letting k = ω
v we have(
∇2 +

ω2

v2

)
G̃(x− x′, ω) =

(
∇2 + k2

)
G̃(x− x′, t) = δ(x′ − x)

The above equation is now in the form of the Helmholtz equation, which we shall study
next.
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2.2 The Helmholtz Equation

We have simplified our original problem of solving the Wave Equation (a two variable
operator) to solving the Helmholtz Equation (a one variable operator). We can further
simplify by Fourier transforming from space (x) to momentum (q)

ˆ
d(x− x′)e−iq·(x−x

′)
{
∇2 + k2

}
G̃(x− x′) =

ˆ
d(x− x′)e−iq·(x−x

′)δ(x′ − x) = 1

Applying the theorem on Fourier Transforms again yields

ˆ
d(x− x′)e−iq·(x−x

′)
{
∇2 + k2

}
G̃(x− x′) =

{
(−iq)2 + k2

} ˜̃G(q, ω) = {−q2 + k2} ˜̃G(q, ω)

Where ˜̃G is the double Fourier Transform of G, ie the transform of G(x−x’, t′− t) from
time to frequency (energy) space and from configuration space x to momentum space q.
Thus we have

{−q2 + k2} ˜̃G(q, ω) = 1

As a result of two Fourier transforms we have diagonalized the wave operator, making
it easy to invert:

˜̃G(q, ω) = − 1

q2 + k2

In the context of electrodyanmics, since εµ =
(
c
v

)2
and k2 =

(
ω
c

)2
we find that

k2 =
(ω
c

)2

εµ

In vacuum, ε = µ = 1 ⇒ k = ω
c . Meaning that the poles of the doubly-transformed

Green’s Function are at k = ±ωc . It is very interesting to consider how this expression
changes in a non-vacuum environment, where ε and µ can depend on the momentum of the
source q or its frequency (energy) ω. This is actually one of the branches of my currently
ongoing research, and leads to interesting applications (discussed in Section 4).

Now that we have obtained an expression for the Green’s function in momentum-
frequency space, we must convert back to a more natural coordinate system. Transforming
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back to spatial coordinates:

G̃(x′ − x, ω) =

ˆ
d3q

(2π)3
eiq·(x

′−x) 1

q2 − k2

= −
ˆ ∞

0

q2dq

(2π)3

1

q2 − k2

ˆ
dΩeiq·(x

′−x)

= −
ˆ ∞

0

q2dq

(2π)3

1

q2 − k2
2π

ˆ pi

0

sin θdθ eiq·(x
′−x) cos θ

= −
ˆ ∞

0

q2dq

(2π)2

1

q2 − k2

ˆ 1

−1

du eiq·(x
′−x)u

= −
ˆ ∞

0

q2dq

(2π)2

1

q2 − k2

eiq|x
′−x| − e−iq|x′−x|

iq|x′ − x|

= − 2

(2π)2

ˆ ∞
0

q2dq

q2 − k2

sin q|x′ − x|
q|x′ − x|

= − 1

2π2|x′ − x|

ˆ ∞
0

q sin q|x′ − x| dq
q2 − k2

= − 1

2π2|x′ − x|
π

2
e±ik|x

′−x|

= − e
±ik|x′−x|

4π|x′ − x|

Thus we have found that the Green’s Function for the Helmoholz Equation is given by

G̃(x′ − x, ω) =−e±ik|x
′−x|

4π|x′−x|

Where the ± is simply shorthand for the sum of the negative-power exponent and the
positive-power exponent: e±A ≡ eA + e−A

We Fourier transform one more time to get the Green’s Function for the wave equation:

G(x′ − x, t− t′) =

ˆ ∞
∞

dω

2π
e−iω(t−t′)G̃(x′ − x, ω)

= −
ˆ ∞
∞

dω

2π
e−iω(t−t′) e

±ik|x′−x|

4π|x′ − x|
e±ik|x

′−x|

= − 1

8π2|x′ − x|

ˆ ∞
∞

dωe−iω((t−t′)±|x′−x|/v)

= −δ ((t− t′)± |x′ − x|/v)

4π|x′ − x|

= −δ (|x′ − x| ± v(t− t′))
4πv|x′ − x|

Thus the Green’s Function for the Wave Equation is

G(x′ − x, t− t′) =−δ(|x′−x|±v(t−t′))
4πv|x′−x|
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2.3 Analysis

Now that we have obtained the Green’s funtions of some of these operators, it is generally
quite easy to find solutions to specific problems. Before we look at some examples, notice
that the limit of k = 0 in the Helmholtz equation is the Poisson Equation, suggesting that
the Green’s function of the ∇2 operator is

G(x− x′) = − 1

4π|x′ − x|
Example: Consider a point charge, situated at x0. The charge distribution of

such a construction is given by ρ = qδ(x0 − x), where q is the charge of the point
charge. We wish to find potential generated by such a construction, where potential
V is given as ∇2V = −ρ. We recognize this as the Poisson Equation, allowing us to
apply the Green’s function determined above

V (x) = −
ˆ ∞
−∞

dx′
−1

4π|x′ − x|
qδ(x0 − x) =

q

4π|x0 − x|

Therefore, the potentiall of a point charge is proportional to the inverse-distance
between the point of evaluation and the charge location (as in Griffiths, page 50 or
any other textbook in electrostatics)

We may also consider the Heat Equation L = ∂
∂t − α∇

2 as a member of this family.
However, Fourier transforming the Wave equation to get rid of one of the derivatives with
respect to t leaves us with the Heat Equation mixed with a frequency (energy component ω.
Although analysis of this cross-dimensional problem and it’s Fourier transform is possible,
the result is fairly complicated and will not be persued here (for a full disclosure consider
Byron, 453-469 [?]).

The power of Fourier transforms and Green’s functions is that we are able to relate many
different problems (Wave, Helmholtz, Poisson, Heat) to each other and unifying them with a
general solution in the form of a set of Fourier-transform related Green’s function solutions.
With proper application of Green’s function and Fourier transforms it is possible to solve a
problem in whatever conjugate space yields the simplest algebra.

3 Electric Field of a Swift Ion

In this section it is my goal to show a practical application of the discussion of mathematical
physics given i nthe previous two sections. Consider a single ion traveling with velocity v,
and, without loss of generatilty, suppose that the electron travels down the ẑ axis, meaning
that v = vz ẑ. We wish to determine the electric field generated by this ion. We begin with
Ampere’s and Farady’s laws:

∇×H =
4π

c
J +

Ḋ

c
∇×E +

Ḃ

c
= 0

Where H is the magnetizing field, E is the electric field, B is the magnetic field, and J is
the current density. H = B

µ and Ḋ = εĖ
Combining these two equations yields

∇× B

µ
=

4π

c
J +

εĖ

c

Taking the time derivative of both sides yields

∇× Ḃ

µ
=

4π

c
J̇ +

εË

c
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Taking the curl of both sides of Faraday’s law gives

∇×∇×E +∇× Ḃ

c
= 0

∇×∇×E +
4πµ

c2
J̇ +

εµË

c2
= 0

Recalling that ∇×∇× E = ∇(∇ · E) −∇2E and applying Gauss’s Law in differential
form (∇ ·E = 4πρ

ε ) yields

0 = ∇(∇ ·E)−∇2E +
4πµ

c2
J +

εµĖ

c2

=
4π ∇ρ
ε
−∇2E +

4πµ

c2
J +

εµĖ

c2

Therefore we have that

∇2E− εµË

c2
= 4π

(
∇ρ
ε

+
µJ̇

c2

)

The format of the above expression is very similar to that of the wave equation:

�f(x, t) =

(
∇2 − 1

v2

∂2

∂t2

)
f(x, t) = g(x, t)

We can define a swift ion as a charged relativistic particle moving at constant velocity
(v . c) in a straight line. Without loss of generality, suppose that the particle travels along
the z axis, so we can represent its charge distribution and current as:

ρ(x, t) = Qδ (x− [r− vt])

J(x, t) = vρ(x, t)

This means that we already have an expression for the Green’s Function

�G = δ(x′ − x)δ(t′ − t)

G(x′ − x, t− t′) = −δ (|x′ − x| ± v(t− t′))
4πv|x′ − x|

Thus we have

�E(x, t) = −4π

{
∇ρ(x, t)

ε
+
µJ̇(x, t)

c2

}

⇒ E(x, t) =

ˆ
d3x′
ˆ ∞
∞

dt′(−4π)

{
∇′ρ(x′, t′)

ε
+
µJ̇(x′, t′)

c2
G(x− x′, t− t′)

}

Fourier transformation yields

Ẽ(x, ω) =

ˆ ∞
∞

dteiωtE(x, t)

=

ˆ ∞
∞

dteiωt
ˆ
d3x′
ˆ ∞
∞

dt′G(x− x′, t− t′)(−4π)

{
∇′ρ(x′, t′)

ε
+
µJ̇(x′, t′)

c2

}

14



or

Ẽ(x, ω) =

ˆ
d3q

(2π)3
eiq·x

ˆ ∞
∞

dteiωtẼ(q, t)

=

ˆ
d3q

(2π)3
eiq·x ˜̃E(q, ω)

But we know that

{∇2 − 1

v2
}E(x, t) = −4π

{
∇ρ(x, t)

ε
+
µJ̇(x, t)

c2

}

⇒ {−q2 + k2} ˜̃E(q, ω) =

ˆ ∞
∞

dteiωt
ˆ
d3xe−iq·x(−4π)

{
∇ρ(x, t)

ε
+
µJ̇(x, t)

c2

}

= 4π

{
−iq
ε

˜̃ρ(q, ω) +
µ(iω)

c2
˜̃J(q, ω)

}

Assuming non-magnetizable media (µ = 1) we have

˜̃E(q, ω) =
1

−q2 + k2ε
4πi

{
−q

ε
+
ωv

c2

}
˜̃ρ(q, ω)

= ˜̃G(q, ω)4πi

{
−q

ε
+
kv

c

}
˜̃ρ(q, ω)

Therefore

Ẽ(x, ω) =

ˆ
d3q

(2π)3
eiq·x ˜̃G(q, ω)4πi

{
−q

ε
+
kv

c

}
˜̃ρ(q, ω)

=

ˆ
d3q

(2π)3
eiq·x4πi

−q
ε + kv

c

q2 − k2ε
˜̃ρ(q, ω)

At this point it is useful to compute ˜̃ρ

˜̃ρ(q, ω) =

ˆ
d3xe−iq·x

ˆ ∞
∞

dteiωtρ(x, t)

=

ˆ
d3xe−iq·x

ˆ ∞
∞

dteiωtQδ(x− [r + vt])

= Q

ˆ ∞
∞

dteiωte−iq·[r+vt]

= Qe−iq·r
ˆ ∞
∞

dteit[ω−q·v]

= 2πQe−iq·rδ(ω − q · v)

Continuing with the previous integral yields

Ẽ(x, ω) =

ˆ
d3q

(2π)3
eiq·x4πi

−q
ε + kv

c

q2 − k2ε

[
2πQe−iq·rδ(ω − q · v)

]
Assuming that the charge Q crosses the origin r = 0 at time t = 0 lets us simplify this

expression to

Ẽ(x, ω) =

ˆ
d3q

(2π)3
eiq·x4πi

−q
ε + kv

c

q2 − k2ε
[2πQδ(ω − q · v)]

15



Recalling that the ion only travels along the z axis, we can write v = vêz, δ(ω−q ·v) =
δ(ω − qzv) = δ

(
v
[
ω
v − qz

])
= 1

v δ
(
qz = ω

v

)
. This will alow us to evaluate the qz integral:

Ẽ(x, ω) =

ˆ
d3q

(2π)2
eiq·x4πi

(qxêx + qyêy + qzêz)/ε− kv/c
q2
x + q2

y + q2
z − k2ε

Qδ(ω − q · v)

=
4πiQ

v

ˆ
d2q

(2π)2
eiqxxeiqyyei

ω
v z

(qxêx + qyêy + ω
v êz)/ε− kv/c

q2
x + q2

y + (ω/v)2 − k2ε

=
4πiQ

v
ei

ω
v z

{ˆ
d2q

(2π)2
eiqxxeiqyy

(qxêx + qyêy)/ε

q2
x + q2

y + (ω/v)2 − k2ε
−
ˆ

d2q

(2π)2
eiqxxeiqyy

kv/c− ω/(vε)
q2
x + q2

y + (ω/v)2 − k2ε
êz

}

Now, if we notice that (ω
v

)2

− k2ε =
(ω
v

)2

−
(ω
c

)2

ε

=
(ω
v

)2
[
1− (ω/c)2ε

(ω/v)2

]
=
(ω
v

)2
[
1−

(v
c

)2

ε

]
=
(ω
v

)2 1

γ2

=

(
ω

γv

)2

where γ is the Lorentz factor from special relativity. Similarly,

kv

c
− ω

vε
= − ω

vε

[
1− ε

(v
c

)2
]

= − ω

vεγ2

Thus our expression for Ẽ becomes

Ẽ(x, ω) =
4πiQ

v
ei

ω
v z

ˆ
d2q

(2π)2
eiqxxeiqyy

(qxêx + qyêy)/ε

q2
x + q2

y + (ω/vγ)2

+
4πiQ

v

ˆ
d2q

(2π)2
eiqxxeiqyy

ω/vεγ2

q2
x + q2

y + (ω/vγ)2
êz

The electric field due to a single ion moving down the z axis is, once we have integrated
out the time dependence, cylindrically symetric (you can imagine that the Fourier Transform
smeared out the electron over its entire trajectory). Therefore we can choose to look at
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x = (b, 0, z). Now we can compute the above two integrals seperately:ˆ
d2q

(2π)2
eiqxxeiqyy

(qxêx + qyêy)/ε

q2
x + q2

y + (ω/vγ)2
=

ˆ
d2q

(2π)2
eiqxb

(qxêx)/ε

q2
x + q2

y + (ω/vγ)2

=

ˆ ∞
−∞

t
dqx

(2π)2
eiqxb

qxêx
ε

ˆ ∞
−∞

dqy
q2
x + q2

y + (ω/vγ)2
êx

=

ˆ ∞
−∞

dqx
(2π)2

eiqxb
qxêx
ε

π√
q2
x + (ω/vγ)2

êx

= − i
ε

∂

∂b

ˆ ∞
−∞

dqx
(2π)2

eiqxb
qxêx
ε

π√
q2
x + (ω/vγ)2

êx

= − 2πi

ε(2π)2
êx

∂

∂b

1

2

ˆ ∞
−∞

dqxe
iqxb

eiqxb√
q2
x + (ω/vγ)2

= − i

2πε
êx

∂

∂b
K0

(
ωb

vγ

)
= − i

2πε
êx

ω

vγ

∂

∂u
K0(u)

= − iω

2πεvγ
êxK1

(
ωb

vγ

)

Here, Ki represents the modified Bessel function of the second kind - they are basically
the basis functions for cylindrical corrdinates (notice that this makes sense, as our electric
field has cylindrical symmetry). I have also used the back cover of Jackson [?] to compute
the dqy integral and have used the fact that ∂

∂uK0(u) = K1, as in Boas, Chapters 12.12-
12.18 [?].

Now we turn to the second integral. We findˆ
d2q

(2π)2
eiqxxeiqyy

ω/vεγ2

q2
x + q2

y + (ω/vγ)2
êz =

ˆ
d2q

(2π)2
eiqxb

(qxêx + qyêy)/ε

q2
x + q2

y + (ω/vγ)2

=

ˆ ∞
−∞

dqx
2π

eiqxb
ˆ ∞
−∞

dqy
2π

ω/vεγ2

q2
x + q2

y + (ω/vγ)2

=
ω

vεγ2
êz

ˆ ∞
−∞

dqx
2π

eiqxb
π

q2
x + (ω/vγ)2

=
2ωπ

(2π)2vεγ2
êz

1

2

ˆ ∞
−∞

dqx
eiqxb

q2
x + (ω/vγ)2

=
ω

(2πvεγ2
êzK0

(
ωb

vγ

)

This leaves us with our final, neat expression for the electric field:

Ẽ(b, ω) =
2Qω
v2εγ

ei
ω
v
z
[
i
γ
K0

(
ωb
vγ

)
ẑ−K1

(
ωb
vγ

)
R̂
]

Where K0 and K1 are modified bessel functions of the second kind, R̂ = êx + êy is the
unit vector pointing in the radial direction away from the z axis along which the ion travels.
Notice that here we have recovered the generality of x = (b, b, z) using the cylindrical
symmetry of the problem. One may be interested in further Fourier transforming this
solution to obtain the electric field in terms of both time and space, but this will eliminate
said symmetry and generate a fairly complicated expression for the electric field. In practice,
the above form is much easier to use.
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4 The Electron Energy Loss Experiment

The Electron Energy Loss Spectroscopy (EELS) uses a Scanning Electron Microscope to fire
single, high-energy relativistic electrons at a target. In the past decade advances have been
made that allow experimentalists to determine the slightest changes in the energy of such an
electron as it flys by a target. These energy losses (on the order of 1-5 electronvolts of the
electron’s original 300 kilo-electonvolts) have been attributed to the electron field generated
by the electron coupling into the electron cloud of the target, which is often a metal nano-
particle of 10-200 nm diameter. Although the electron is practically a point particle and its
electric field is very localized (the field is almost absent just 5 nm away from the electron) the
EELS experiment detects that the electron cloud of the nanoparticle experiences a global,
wave-like oscillation due to the electron’s perturbation. Such oscillations are known in the
field as surface plasmons and have the same nodal structure as many of the waves we are
accostomed to (guitar strings or wave-like light). As an analogy, consider poking a water
balloon with a stick (the swift electron). The water inside the balloon will oscillate, causing
the walls of the balloon (the electron cloud) to expand and contract in a wave-like manner.
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Figure 4: The above plots show the wave-like excitation of the electron cloud of a metal
nano-rod due to different energies being coupled into the cloud by the swift electron. Orange
and yellow areas represent the locations where the electron was most likely to couple to the
electron cloud. The images on the left are the experimentally obtained plots, while the
images on the right are the results of our theoretical computations. Notice the wave-like
structure consistent throughout both experimental and theoretical results

Curiously, such excitations have been attributed to plasmons only very recently, and it
is my group’s goal to construct a computational model that will accurately predict which
plasmons (how many nodes in the wave) can be excited by a swift electron and how such
plasmons will evolve in time. We have found numerous results that spike our interest. For
instance, we have shown that placing two nanometals within several nanometers of each
other and shooting a single electron near one such metal can lead to a plasmonic excitation
that travels from one metal to the other, creating a ‘hot spot’ in the junction between them.
Such a hot spot experiences a 100-fold magnification of the incident electric field (due to
the single electron). Applications of such hot spots have been suggested in a variety of fields
ranging from solar cell enhancement to single-molecule spectroscopy.

The computation model that we use relies on the Discrete Dipole Approximation,
where the nanometal is broken into hundreds of thousands of small dipoles (arrows that point
in the direction of electric flow) that, starting at rest, react to the electric field generated
by the electron. While at first only the dipoles near the electron are influenced by the
perturbing field (remember that the electron’s field is very localized), as some dipoles re-
orient to accommodate the change in the electric field, nearby dipoles are also perturbed,
causing them to also re-orient. This effect propogates throughout the metal, creating the
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Figure 5: A close-up on a computational model of a hot spot. Three circular metals, placed
very close together, focus the electric field generated by the swift electron into the junctions
that seperate them, magnifying the field up to 100-fold. This effect has been used extensively
in chemical spectroscopy [?] and has been both a problem and a possible way to enhance
solar cells [?]

wave-like oscillations that we observe.

The purpose of the derivation within this paper - the electric field of a swift ion - is
clear. The explicit form of the electric field is used directly in computing the electron’s
effect on the metal’s electron cloud. To make derivations simplest the model assumes that
the electron travels though a vacuum, allowing ε = µ = 1. Future research will involve
studying how a non-vacuum medium ε 6= 1, and non-constant medium ε = ε(x) affect this
calculation. If our model can correctly predict the scattering of a swift electron off a general
medium, we will be able to use the EELS experiment to determine the dielectric constant
ε of any material (even one consisting of many different materials in random proportions).
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