Math 336 Final Exam, 8:30 am, June 6, 2011

3.7			
Name:			

One notebook-size page of notes is allowed (each side may be used).

1. Suppose f is analytic on $H=\{z=x+iy:y>0\}$ and suppose $|f(z)|\leq 1$ on H and f(i)=0. Prove

$$|f(z)| \le \left| \frac{z-i}{z+i} \right|.$$

2. Let $m \ge 0$ be an integer. Compute the residue of $\Gamma(z)$ at -m.

3. Let g(z,t) be a continuous function of z,t where $z\in D,\,t\in K,\,D$ is an open subset of $\mathbb C$ and K is a compact subset of $\mathbb R^n$. Suppose that g is harmonic as a function z. Prove that $G(z)=\int_K g(z,t)dt$ is harmonic.

4. Let
$$f(z)=\frac{z-a}{1-\bar az}$$
, where $|a|<1$. Let $D=\{z:|z|<1\}$. Prove that
$$\frac{1}{\pi}\int_D|f'(z)|^2dxdy=1.$$

5. Decide whether or not the following products converge.

(a)
$$\prod_{j=1}^{\infty} e^{(-1)^j/\sqrt{j}}$$

(a)
$$\prod_{j=1}^{\infty} e^{(-1)^j/\sqrt{j}}$$
(b)
$$\prod_{j=1}^{\infty} \left(1 + i\frac{(-1)^j}{\sqrt{j}}\right)$$

6. Prove that all conformal maps from the upper half plane to the unit disk have the form $\frac{1}{2}$

$$\alpha \frac{z-\beta}{z-\bar{\beta}},$$

where $|\alpha| = 1$, $Im(\beta) > 0$.

7. (a) Find a bounded harmonic function u defined on $D = \{z : |z| < 1\}$ so that

$$\lim_{z \to e^{it}} u(z) = \begin{cases} 1, & \text{if } 0 < t < \pi/2 \\ 0, & \text{if } \pi/2 < t < 2\pi \end{cases}$$

(b) Find an unbounded harmonic function with the same property.

8

8. Prove that if |z| < 1

$$\prod_{k=0}^{k=\infty} (1+z^{2^k}) = \frac{1}{1-z}$$

9. Let u be harmonic on the open set W. Assume that u is not constant. Let $D \subset W$ be an open subset of W. Prove that u(D) is an open subset of \mathbb{R} .