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1 Introduction

Continued fractions serve as a useful tool for approximation and as a field of their own. Here we will
concern ourselves with results from Cvijovic and Klinowski from Continued-Fraction Ezrpansions
for the Riemann Zeta Function and Polylogarithms [3]. From the results, we will be capable of
numerically approximating the Riemann zeta function ¢ for integer values n, which are special cases
of the polylogarithm.

2 Notation

We will denote the positive integers N and N U{0} as Z. We will define the polylogarithm function
as follows.

o

Li(z)=) - (1)
k=1

In particular, Li,(1) = ((v) where ((v) is the Riemann zeta function. We will denote the set of
all real-valued, bounded, monotone non-decreasing functions ¢(¢) with infinitely many values on
a<t<bas ®(a,b) where a,b are elements of the extended reals R* =R U {—o00, 00}.

3 Preliminary Definitions and Results

Here we will give necessary definitions and some preliminary results.

3.1 Continued Fractions

We define a continued fraction as follows.

Definition 3.1. An (infinite) continued fraction K (ax/by) is an expression of the form

00 a
K(ar/by) = K 7% = -
k=1 bk as
b1 + .
3
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2 + bs 1
The nth approximate F, is defined
noag An
FTL = _— = —
k=1 bk B,

We say K (ay/b) converges to F' if the sequence of approximates converge F' in the extended
complex plane C * = C U {oo}. We call A,, the nth numerator and B, the nth denominator.
We say K (ax/by) diverges if the limit lim,,_,~ F;, does not exist. We call each a; and by the kth
numerator and denominator, respectively. Note that we will be use the convention that a; # 0. We
say two continued fractions K (ay/by) and K (aj/b;) are equivalent, written K (ay/by) = K (a} /b)),
if each approximate F,, = F};.



A continued fraction of the form

K (a/by) = K “° @)

Is called a regular C-fraction (regular corresponding fraction) and a continued fraction of the form
K(ar/by) = K % (3)

Is called a modified reqular C-fraction. If each ay > 0, then (2) and (3) are called regular S-fraction
and modified regqular S-fraction (Stieltjes fractions), respectively.

z c
A finite continued fraction K 3 (( )) is said to correspond to the series E —Z at z = oo if the
—1by(2 z
k=0

following formal power series expansions are valid:

An
c
Fo(z) — Z Z% = constz~ e+ 4.
p=0

Where n=1,2,3,....

3.2 The Stieltjes-Riemann Integral

Here we will define the Stieltjes-Riemann integral of a function f(x), denoted by f; f(x)da(z), and
give a few preliminary results. Here, we will use Apostol [1]. We define Aoy, = a(x) — a(zg—1)

such that .
ZAak = a(b) — a(a)
k=1

We will also use the notion of a partition P of an interval [a,b]. This will be the same as that
discussed in Foland [4]. We now define the Stieltjes-Riemann integral.

Definition 3.2. Let P = {xg,z1,...,zr} be a partition of [a,b] and let ty € [xx_1,x]. Then the
Stieltjes-Riemann sum of f with respect to « is defined as

S(P, f,a thk JAay

If there exists a unique number A such that for any e > 0, there exists a partition P, of [a,b]
such that for every partition P finer than P, and for every choice of ty, € [xx_1, k|, we have that

|S(P, f,a) — A| < e. The number A = fff(:c) do(z).

We state without proof that A is uniquely determined whenever it exists. For our proof the
main theorem, we will need the following two theorems.

Theorem 3.3. Suppose f is continuous on [a,b] and « is any monotonic, increasing function.
Then f is integrable with respect to « over [a, b).



For a proof, see [2]. We now give criteria where a Stieltjes-Riemann integral simplifies to a
Riemann integral.

Theorem 3.4. Suppose f is integrable with respect to « on [a,b]. If « is continuously differentiable
on [a,b], then fff(w)a’(w) dz exists. Further

[ 1ot = [ walwas

For proof, see Apostol [1].

3.3 The Markov Theorem

We will state the Markov theorem, without proof, since it will be used the proof of the main
theorem. For a proof, see Perron [6]. However, we will state it as found in Jones and Thron [5].

Theorem 3.5. Suppose ¢ € ®(0,a). Then there is a modified S-fraction which corresponds to the
series

00 \k a
Z(lz)kﬂk where i, = / t dep(t) (4)
k=0 0

at z = 00, converges to the function

/ ") (5)
0

z+t
for all z € C \ [—a,0].

3.4 Hankel Determinants

Definition 3.6. Suppose {ci}72, is a sequence. Then the Hankel determinants H,(,Z:) associated
with {cy}, where r € ZT and m € N are given by

Cr Cr+1 e Cr4+m—1
Criq Cri9 e Cr+m
" () _ | Cret O '
H() = 17 Hm = . . .
Cr+m—1 Cr4+m " Cr42m—2

4 The Main Theorem

Theorem 4.1. Suppose that r € Z* is a non-negative integer and m,n € N. For any fized v, m,n,
define Al (n) as the determinant of an m x m matriz

(_1)i+j+r
(r+it+j—-1n"

AW (n) = det ‘

1<i,j<m



Where we define Ag) (n) =1. Then

. X0 ap kR
—Lip(—2) = K 2~
in(—2) = K 2 (6)
With
AR () A0 (n) ALY (A ()
an,1 = 17 an2m = — (0) 1) y An2m+1 = — () ) (7)
Am (n)Am—l(n) A/ (n) A (n)
Proof. Consider the function
0, t=20
n—1
Pn(t) = ‘(nfl1)! Jo (log (3))" ™ de,  0<t<1
L, t>1

For n = 1, the integrand is just 1, so it is clearly integrable and ¢, (¢) is continuous. Where n € N.
Prudnikov [7] gives us

/: <log (i))n_l dr = :z:: (_1)k(n ;!1)! (t(logt)k ~ e(log e)k)

We apply L’Hoptial’s rule to get that elog®e — 0 as ¢ — 0. So

/ot <log <i~>>n1 =3 (o i itog o

k=0

L’Hopital’s rule gives that ¢,(t) — 0 as t — 0" and ¢,(t) - 1l as¢t — 17. For 0 < ¢ < 1,
log (%) > 0 and continuous and, thus, integrable, so the integral is monotonically increasing and
continuous on [0, 1]. Further, ¢,(t) € ®(0, c0).

Consider the following integral, called the Stieltjes transform of ¢, (t).

z+t

Where z ¢ [—00,0]. Then by (3.3), the integrand is integrable with respect to ¢, (¢). Further, since
¢n(t) is continuously differentiable on [0, 00), by theorem (3.4), we have that

e = / i (s C)) «

We then substitute x = log (%) This gives us that t = e™ and dt = —e~*dx. So

1 0 wnfl 1 00 xnfl
n — _ T d — z d
fal2) (n—l)!/ z—i—e‘x( e)do (n—l)!/o et 41 v

[e.o]




This a form of the Fermi-Dirac integral, which has a known polylogarithm representation. In our

case .
fn(z) = —Liy, <_z>

Using the series representation of the polylogarithm (1), we get, for |z| > 1, the following.

o0 _1k ° —1k e Cn

k=1 k=0 k=0
Where we have let ¢, = % Further, Markov tells us there exists a corresponding modified
S-fraction that converges to zfy,(z) for all z € C \ [0, —1] and even tells us that
Cnk = (_1)klun,k (10)

Where p, = ﬁ fol th (log (%))nfl dt.

c
Jones and Thron [5] give us that whenever a series S = " corresponds to a modified

2k
k=0
C-fraction C' = kIEOaTk at z = oo, we know that
HT(T%)H(O) gY O
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Which is exactly what we have, except
1 0 1 0
o1 e - A@AL @) AL A, ()
n,l — 4, n,2m — 0 1 ’ n,am - 0 1

A (m) AL () A (n) AL ()
With each A,(f;) (n) as described in the main theorem. We then have

an(Z) _ Gn,1

an,2
1+
an,3
zZ+
14 Gn 4
Z4 -
Dividing both sides by z and simple factoring gives us
n,1(1 % q, (1
fuley a2 g ani1/2)
m an2(1/2) k=1 1
14 an,3(1/z)
ana(1/2)
14
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Thus, —Lip(—1/2) = kglw. So

. 20 An kR
~Lin(=2) = iy nz

And we are done.

5 Additional Results

We conclude with some calculations. Using our results, we may immediately use our results for
—Lii(—2) = log(1+ 2) and —Li,(—1) = (1 —217")¢(n), for integers n > 2. Cvijovié works out the

first of these for us.

0 q z
log(1+2) = kI:<1 1’1k
Where
a1 =1,  arom=— Gl = ——
L= 2T 90m —1)" PN T 20m + 1)

Take z = 1. Then we should have an approximation for log(2). We have

11
o=l l - - == = — = = — —
{al,k,‘}k_l { 727673757107147779718722}

So log(2) ~ 0.69314721238833921. The more precise value is log(2) ~ 0.6931471805599453. For

z = 2, that is, log(3), we multiply each of the a;j; by 2. This gives us an approximation

log(3) ~ 1.0986132368628543 as compared to the more precise log(3) ~ 1.0986122886681098.

More appropriately, let z = e — 1. Using this value will, of course, give us an exact value for

log(1 4+ z) = log(e) = 1 to compare to. We get log(e) ~ 1.0000003205889758. We may even let
z = ei — 1. This gives log(ie) ~ 1.0003005411960346 + 1.5698739723830915i. The exact value of

log(ie) = 14i5.
Using Mathematica v.6, we calculate the first 6 numerators of a,  for 1 <n < 10 (attached).

n\k|1| 2 3 4 5 6

N I 1 ;

AHEREE T o i

3 1] 1 i? 217 30271 15665 A 7

4 1) L I8 il ity 1081830

5 1 :% &16 12869278813 éO?lgOégogé 764581%884%3988869
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o |1 0| BBRC | B | SRS, | s 0RO licsti ettt

10 1] L 8%559? 219367580 157783%38%803932%57 2841818 774?%95358%%96725%%7827898887
1024 | 60466176 | 5311870893 | 192711355734365234375 | 30207634079985595577913335090000000000



With the above table, we calculate the 6th approximants Fg for a given n of the continued fraction
expansion of the Riemann zeta function ((n). Below is a table of values for 2 < n < 10 accompanied

by the values found using Mathematica’s internal command.

Fg

Mathematica

© 00~ O U W NI

—
o

1.6448969002937126
1.2020463030724917
1.082320277569941
1.0369270009498681
1.0173428854434825
1.008349239007861
1.004077348357326
1.0020083913041948
0.9990395073157157

1.6449340668482262
1.2020569031595942
1.082323233711138
1.0369277551433698
1.017343061984449
1.0083492773819227
1.004077356197944
1.0020083928260821
1.0009945751278178
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