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1 Introduction

Continued fractions serve as a useful tool for approximation and as a field of their own. Here we will
concern ourselves with results from Cvijovic and Klinowski from Continued-Fraction Expansions
for the Riemann Zeta Function and Polylogarithms [3]. From the results, we will be capable of
numerically approximating the Riemann zeta function ζ for integer values n, which are special cases
of the polylogarithm.

2 Notation

We will denote the positive integers N and N ∪{0} as Z+. We will define the polylogarithm function
as follows.

Liν(z) =

∞∑
k=1

zk

kν
(1)

In particular, Liν(1) = ζ(ν) where ζ(ν) is the Riemann zeta function. We will denote the set of
all real-valued, bounded, monotone non-decreasing functions ϕ(t) with infinitely many values on
a ≤ t ≤ b as Φ(a, b) where a, b are elements of the extended reals R ∗ = R ∪ {−∞,∞}.

3 Preliminary Definitions and Results

Here we will give necessary definitions and some preliminary results.

3.1 Continued Fractions

We define a continued fraction as follows.

Definition 3.1. An (infinite) continued fraction K(ak/bk) is an expression of the form

K(ak/bk) =
∞
K
k=1

ak
bk

=
a1

b1 +
a2

b2 +
a3

b3 + · · ·

The nth approximate Fn is defined

Fn =
n
K
k=1

ak
bk

=
An

Bn

We say K(ak/bk) converges to F if the sequence of approximates converge F in the extended
complex plane C ∗ = C ∪ {∞}. We call An the nth numerator and Bn the nth denominator.
We say K(ak/bk) diverges if the limit limn→∞ Fn does not exist. We call each ak and bk the kth
numerator and denominator, respectively. Note that we will be use the convention that ak ̸= 0. We
say two continued fractions K(ak/bk) and K(a∗k/b

∗
k) are equivalent, written K(ak/bk) ∼= K(a∗k/b

∗
k),

if each approximate Fn = F ∗
n .
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A continued fraction of the form

K(ak/bk) =
∞
K
k=1

akz

1
(2)

Is called a regular C-fraction (regular corresponding fraction) and a continued fraction of the form

K(ak/bk) =
∞
K
k=1

ak
1

(3)

Is called a modified regular C-fraction. If each ak > 0, then (2) and (3) are called regular S-fraction
and modified regular S-fraction (Stieltjes fractions), respectively.

A finite continued fraction
n
K
k=1

ak(z)

bk(z)
is said to correspond to the series

∞∑
k=0

ck
zk

at z = ∞ if the

following formal power series expansions are valid:

Fn(z)−
λn∑
p=0

cp
zk

= constz−(λn+1) + · · ·

Where n = 1, 2, 3, . . . .

3.2 The Stieltjes-Riemann Integral

Here we will define the Stieltjes-Riemann integral of a function f(x), denoted by
∫ b
a f(x) dα(x), and

give a few preliminary results. Here, we will use Apostol [1]. We define ∆αk = α(xk) − α(xk−1)
such that

n∑
k=1

∆αk = α(b)− α(a)

We will also use the notion of a partition P of an interval [a, b]. This will be the same as that
discussed in Foland [4]. We now define the Stieltjes-Riemann integral.

Definition 3.2. Let P = {x0, x1, . . . , xk} be a partition of [a, b] and let tk ∈ [xk−1, xk]. Then the
Stieltjes-Riemann sum of f with respect to α is defined as

S(P, f, α) =
n∑

k=1

f(tk)∆αk

If there exists a unique number A such that for any ϵ > 0, there exists a partition Pϵ of [a, b]
such that for every partition P finer than Pϵ and for every choice of tk ∈ [xk−1, xk], we have that

|S(P, f, α)−A| < ϵ. The number A =
∫ b
a f(x) dα(x).

We state without proof that A is uniquely determined whenever it exists. For our proof the
main theorem, we will need the following two theorems.

Theorem 3.3. Suppose f is continuous on [a, b] and α is any monotonic, increasing function.
Then f is integrable with respect to α over [a, b].

2



For a proof, see [2]. We now give criteria where a Stieltjes-Riemann integral simplifies to a
Riemann integral.

Theorem 3.4. Suppose f is integrable with respect to α on [a, b]. If α is continuously differentiable

on [a, b], then
∫ b
a f(x)α′(x) dx exists. Further∫ b

a
f(x) dα(x) =

∫ b

a
f(x)α′(x) dx

For proof, see Apostol [1].

3.3 The Markov Theorem

We will state the Markov theorem, without proof, since it will be used the proof of the main
theorem. For a proof, see Perron [6]. However, we will state it as found in Jones and Thron [5].

Theorem 3.5. Suppose ϕ ∈ Φ(0, a). Then there is a modified S-fraction which corresponds to the
series

∞∑
k=0

(−1)kµk

zk
where µk =

∫ a

0
tk dϕ(t) (4)

at z = ∞, converges to the function ∫ a

0

z

z + t
dϕ(t) (5)

for all z ∈ C \ [−a, 0].

3.4 Hankel Determinants

Definition 3.6. Suppose {ck}∞k=0 is a sequence. Then the Hankel determinants H
(r)
m associated

with {ck}, where r ∈ Z+ and m ∈ N are given by

H
(r)
0 = 1, H

(r)
m =

∣∣∣∣∣∣∣∣∣
cr cr+1 · · · cr+m−1

cr+1 cr+2 · · · cr+m
...

...
. . .

...
cr+m−1 cr+m · · · cr+2m−2

∣∣∣∣∣∣∣∣∣
4 The Main Theorem

Theorem 4.1. Suppose that r ∈ Z+ is a non-negative integer and m,n ∈ N . For any fixed r,m, n,

define A
(r)
m (n) as the determinant of an m×m matrix

A(r)
m (n) = det

∥∥∥∥ (−1)i+j+r

(r + i+ j − 1)n

∥∥∥∥
1≤i,j≤m
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Where we define A
(r)
0 (n) = 1. Then

−Lin(−z) =
∞
K
k=1

an,kz

1
(6)

With

an,1 = 1, an,2m = −
A

(1)
m (n)A

(0)
m−1(n)

A
(0)
m (n)A

(1)
m−1(n)

, an,2m+1 = −
A

(1)
m−1(n)A

(1)
m+1(n)

A
(0)
m (n)A

(1)
m (n)

(7)

Proof. Consider the function

ϕn(t) =


0, t = 0

1
(n−1)!

∫ t
0

(
log

(
1
x

))n−1
dx, 0 < t ≤ 1

1, t > 1

For n = 1, the integrand is just 1, so it is clearly integrable and ϕn(t) is continuous. Where n ∈ N .
Prudnikov [7] gives us∫ t

ϵ

(
log

(
1

x

))n−1

dx =

n−1∑
k=0

(−1)k
(n− 1)!

k!

(
t(log t)k − ϵ(log ϵ)k

)
We apply L’Hôptial’s rule to get that ϵ logk ϵ → 0 as ϵ → 0. So∫ t

0

(
log

(
1

x

))n−1

dx =

n−1∑
k=0

(−1)k
(n− 1)!

k!
t logk t (8)

L’Hôpital’s rule gives that ϕn(t) → 0 as t → 0+ and ϕn(t) → 1 as t → 1−. For 0 < t ≤ 1,
log

(
1
x

)
≥ 0 and continuous and, thus, integrable, so the integral is monotonically increasing and

continuous on [0, 1]. Further, ϕn(t) ∈ Φ(0,∞).
Consider the following integral, called the Stieltjes transform of ϕn(t).

fn(z) =

∫ ∞

0

dϕn(t)

z + t
(9)

Where z /∈ [−∞, 0]. Then by (3.3), the integrand is integrable with respect to ϕn(t). Further, since
ϕn(t) is continuously differentiable on [0,∞), by theorem (3.4), we have that

fn(z) =
1

(n− 1)!

∫ 1

0

1

z + t

(
log

(
1

t

))n−1

dt

We then substitute x = log
(
1
t

)
. This gives us that t = e−x and dt = −e−xdx. So

fn(z) =
1

(n− 1)!

∫ 0

∞

xn−1

z + e−x
(−e−x) dx =

1
z

(n− 1)!

∫ ∞

0

xn−1

ex + 1
z

dx
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This a form of the Fermi-Dirac integral, which has a known polylogarithm representation. In our
case

fn(z) = −Lin

(
−1

z

)
Using the series representation of the polylogarithm (1), we get, for |z| > 1, the following.

fn(z) = −
∞∑
k=1

(−1)k

knzk
⇐⇒ zfn(z) =

∞∑
k=0

(−1)k

(k + 1)nzk
=

∞∑
k=0

cn,k
zk

Where we have let cn,k = (−1)k

(k+1)n . Further, Markov tells us there exists a corresponding modified

S-fraction that converges to zfn(z) for all z ∈ C \ [0,−1] and even tells us that

cn,k = (−1)kµn,k (10)

Where µn,k = 1
(n−1)!

∫ 1
0 tk

(
log

(
1
t

))n−1
dt.

Jones and Thron [5] give us that whenever a series S =

∞∑
k=0

ck
zk

corresponds to a modified

C-fraction C =
∞
K
k=0

ak
1 at z = ∞, we know that

a1 = c0, a2m = −
H

(1)
m H

(0)
m−1

H
(0)
m H

(1)
m−1

, a2m+1 = −
H

(1)
m−1H

(0)
m+1

H
(0)
m H

(1)
m

Which is exactly what we have, except

an,1 = 1, an,2m = −
A

(1)
m (n)A

(0)
m−1(n)

A
(0)
m (n)A

(1)
m−1(n)

, an,2m+1 = −
A

(1)
m−1(n)A

(0)
m+1(n)

A
(0)
m (n)A

(1)
m (n)

With each A
(r)
m (n) as described in the main theorem. We then have

zfn(z) =
an,1

1 +
an,2

z +
an,3

1 +
an,4

z + · · ·
Dividing both sides by z and simple factoring gives us

fn(z) ∼=
an,1(1/z)

1 +
an,2(1/z)

1 +
an,3(1/z)

1 +
an,4(1/z)

1 + · · ·

=
∞
K
k=1

an,k(1/z)

1
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Thus, −Lin(−1/z) =
∞
K
k=1

an,k(1/z)
1 . So

−Lin(−z) =
∞
K
k=1

an,kz

z

And we are done.

5 Additional Results

We conclude with some calculations. Using our results, we may immediately use our results for
−Li1(−z) = log(1+ z) and −Lin(−1) = (1− 21−n)ζ(n), for integers n ≥ 2. Cvijović works out the
first of these for us.

log(1 + z) =
∞
K
k=1

a1,kz

1

Where
a1,1 = 1, a1,2m =

m

2(2m− 1)
, an,2m+1 =

m

2(2m+ 1)

Take z = 1. Then we should have an approximation for log(2). We have

{a1,k}11k=1 =

{
1,

1

2
,
1

6
,
1

3
,
1

5
,
3

10
,
3

14
,
2

7
,
2

9
,
5

18
,
5

22

}
So log(2) ≈ 0.69314721238833921. The more precise value is log(2) ≈ 0.6931471805599453. For
z = 2, that is, log(3), we multiply each of the a1,k by 2. This gives us an approximation
log(3) ≈ 1.0986132368628543 as compared to the more precise log(3) ≈ 1.0986122886681098.
More appropriately, let z = e − 1. Using this value will, of course, give us an exact value for
log(1 + z) = log(e) = 1 to compare to. We get log(e) ≈ 1.0000003205889758. We may even let
z = ei − 1. This gives log(ie) ≈ 1.0003005411960346 + 1.5698739723830915i. The exact value of
log(ie) = 1 + iπ2 .

Using Mathematica v.6, we calculate the first 6 numerators of an,k for 1 ≤ n ≤ 10 (attached).

n \ k 1 2 3 4 5 6

1 1 1
2

1
6

1
3

1
5

3
10

2 1 1
4

7
36

17
63

647
2975

294777
1099900

3 1 1
8

37
216

217
999

30271
143375

1566514917
6568807000

4 1 1
16

175
1296

493
2835

2081687
10784375

10844839670553
51313584550000

5 1 1
32

781
7776

26281
189783

10916749081
64142065625

764501700472728669
4098615465682300000

6 1 1
64

3367
46656

38471
350649

1367030273
9326890625

8622058669652019969
52591021632583000000

7 1 1
128

14197
279936

2685817
31048839

370008803686537
2978948746015625

1426198351032831157596051219
9937759350909637457290000000

8 1 1
256

58975
1679616

5253901
77386995

148194215774887
1423937552734375

48713739188597525561552252793
389298869226947292093500000000

9 1 1
512

242461
10077696

253202761
4772359863

1481600973702225343
17129406985162109375

3706881030016093368309746961803079
34104132476517440790161093000000000

10 1 1
1024

989527
60466176

219367507
5311870893

13770332030069337287
192711355734365234375

2841818777412983506316725367087919267
30207634079985595577913335090000000000
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With the above table, we calculate the 6th approximants F6 for a given n of the continued fraction
expansion of the Riemann zeta function ζ(n). Below is a table of values for 2 ≤ n ≤ 10 accompanied
by the values found using Mathematica’s internal command.

n F6 Mathematica

2 1.6448969002937126 1.6449340668482262
3 1.2020463030724917 1.2020569031595942
4 1.082320277569941 1.082323233711138
5 1.0369270009498681 1.0369277551433698
6 1.0173428854434825 1.017343061984449
7 1.008349239007861 1.0083492773819227
8 1.004077348357326 1.004077356197944
9 1.0020083913041948 1.0020083928260821
10 0.9990395073157157 1.0009945751278178
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