Continued Fraction Approximations of the Riemann Zeta Function MATH 336

Shawn Apodaca

1 Introduction

Continued fractions serve as a useful tool for approximation and as a field of their own. Here we will concern ourselves with results from Cvijovic and Klinowski from Continued-Fraction Expansions for the Riemann Zeta Function and Polylogarithms [3]. From the results, we will be capable of numerically approximating the Riemann zeta function ζ for integer values n, which are special cases of the polylogarithm.

2 Notation

We will denote the positive integers \mathbb{N} and $\mathbb{N} \cup\{0\}$ as \mathbb{Z}^{+}. We will define the polylogarithm function as follows.

$$
\begin{equation*}
L i_{\nu}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{\nu}} \tag{1}
\end{equation*}
$$

In particular, $L i_{\nu}(1)=\zeta(\nu)$ where $\zeta(\nu)$ is the Riemann zeta function. We will denote the set of all real-valued, bounded, monotone non-decreasing functions $\phi(t)$ with infinitely many values on $a \leq t \leq b$ as $\Phi(a, b)$ where a, b are elements of the extended reals $\mathbb{R}^{*}=\mathbb{R} \cup\{-\infty, \infty\}$.

3 Preliminary Definitions and Results

Here we will give necessary definitions and some preliminary results.

3.1 Continued Fractions

We define a continued fraction as follows.
Definition 3.1. An (infinite) continued fraction $K\left(a_{k} / b_{k}\right)$ is an expression of the form

$$
K\left(a_{k} / b_{k}\right)={\underset{k}{k}}_{\infty}^{\infty} \frac{a_{k}}{b_{k}}=\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\frac{a_{3}}{b_{3}+\cdots}}}
$$

The nth approximate F_{n} is defined

$$
F_{n}={\underset{K}{\mathrm{~K}}}_{\mathrm{K}}^{\mathrm{K}} \frac{a_{k}}{b_{k}}=\frac{A_{n}}{B_{n}}
$$

We say $K\left(a_{k} / b_{k}\right)$ converges to F if the sequence of approximates converge F in the extended complex plane $\mathbb{C}^{*}=\mathbb{C} \cup\{\infty\}$. We call A_{n} the nth numerator and B_{n} the nth denominator. We say $K\left(a_{k} / b_{k}\right)$ diverges if the $\operatorname{limit} \lim _{n \rightarrow \infty} F_{n}$ does not exist. We call each a_{k} and b_{k} the k th numerator and denominator, respectively. Note that we will be use the convention that $a_{k} \neq 0$. We say two continued fractions $K\left(a_{k} / b_{k}\right)$ and $K\left(a_{k}^{*} / b_{k}^{*}\right)$ are equivalent, written $K\left(a_{k} / b_{k}\right) \cong K\left(a_{k}^{*} / b_{k}^{*}\right)$, if each approximate $F_{n}=F_{n}^{*}$.

A continued fraction of the form

$$
\begin{equation*}
K\left(a_{k} / b_{k}\right)={\underset{k=1}{\infty} \frac{a_{k} z}{1}, ~}_{\text {a }} \tag{2}
\end{equation*}
$$

Is called a regular C-fraction (regular corresponding fraction) and a continued fraction of the form

$$
\begin{equation*}
K\left(a_{k} / b_{k}\right)={\underset{K}{k=1}}_{\infty}^{K} \frac{a_{k}}{1} \tag{3}
\end{equation*}
$$

Is called a modified regular C-fraction. If each $a_{k}>0$, then (2) and (3) are called regular S-fraction and modified regular S-fraction (Stieltjes fractions), respectively.
 following formal power series expansions are valid:

$$
F_{n}(z)-\sum_{p=0}^{\lambda_{n}} \frac{c_{p}}{z^{k}}=\operatorname{const} z^{-\left(\lambda_{n}+1\right)}+\cdots
$$

Where $n=1,2,3, \ldots$.

3.2 The Stieltjes-Riemann Integral

Here we will define the Stieltjes-Riemann integral of a function $f(x)$, denoted by $\int_{a}^{b} f(x) d \alpha(x)$, and give a few preliminary results. Here, we will use Apostol [1]. We define $\Delta \alpha_{k}=\alpha\left(x_{k}\right)-\alpha\left(x_{k-1}\right)$ such that

$$
\sum_{k=1}^{n} \Delta \alpha_{k}=\alpha(b)-\alpha(a)
$$

We will also use the notion of a partition P of an interval $[a, b]$. This will be the same as that discussed in Foland [4]. We now define the Stieltjes-Riemann integral.
Definition 3.2. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ be a partition of $[a, b]$ and let $t_{k} \in\left[x_{k-1}, x_{k}\right]$. Then the Stieltjes-Riemann sum of f with respect to α is defined as

$$
S(P, f, \alpha)=\sum_{k=1}^{n} f\left(t_{k}\right) \Delta \alpha_{k}
$$

If there exists a unique number A such that for any $\epsilon>0$, there exists a partition P_{ϵ} of $[a, b]$ such that for every partition P finer than P_{ϵ} and for every choice of $t_{k} \in\left[x_{k-1}, x_{k}\right]$, we have that $|S(P, f, \alpha)-A|<\epsilon$. The number $A=\int_{a}^{b} f(x) d \alpha(x)$.

We state without proof that A is uniquely determined whenever it exists. For our proof the main theorem, we will need the following two theorems.
Theorem 3.3. Suppose f is continuous on $[a, b]$ and α is any monotonic, increasing function. Then f is integrable with respect to α over $[a, b]$.

For a proof, see [2]. We now give criteria where a Stieltjes-Riemann integral simplifies to a Riemann integral.

Theorem 3.4. Suppose f is integrable with respect to α on $[a, b]$. If α is continuously differentiable on $[a, b]$, then $\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$ exists. Further

$$
\int_{a}^{b} f(x) d \alpha(x)=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x
$$

For proof, see Apostol [1].

3.3 The Markov Theorem

We will state the Markov theorem, without proof, since it will be used the proof of the main theorem. For a proof, see Perron [6]. However, we will state it as found in Jones and Thron [5].

Theorem 3.5. Suppose $\phi \in \Phi(0, a)$. Then there is a modified S-fraction which corresponds to the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(-1)^{k} \mu_{k}}{z^{k}} \quad \text { where } \quad \mu_{k}=\int_{0}^{a} t^{k} d \phi(t) \tag{4}
\end{equation*}
$$

at $z=\infty$, converges to the function

$$
\begin{equation*}
\int_{0}^{a} \frac{z}{z+t} d \phi(t) \tag{5}
\end{equation*}
$$

for all $z \in \mathbb{C} \backslash[-a, 0]$.

3.4 Hankel Determinants

Definition 3.6. Suppose $\left\{c_{k}\right\}_{k=0}^{\infty}$ is a sequence. Then the Hankel determinants $H_{m}^{(r)}$ associated with $\left\{c_{k}\right\}$, where $r \in \mathbb{Z}^{+}$and $m \in \mathbb{N}$ are given by

$$
H_{0}^{(r)}=1, \quad H_{m}^{(r)}=\left|\begin{array}{cccc}
c_{r} & c_{r+1} & \cdots & c_{r+m-1} \\
c_{r+1} & c_{r+2} & \cdots & c_{r+m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{r+m-1} & c_{r+m} & \cdots c_{r+2 m-2} &
\end{array}\right|
$$

4 The Main Theorem

Theorem 4.1. Suppose that $r \in \mathbb{Z}^{+}$is a non-negative integer and $m, n \in \mathbb{N}$. For any fixed r, m, n, define $A_{m}^{(r)}(n)$ as the determinant of an $m \times m$ matrix

$$
A_{m}^{(r)}(n)=\operatorname{det}\left\|\frac{(-1)^{i+j+r}}{(r+i+j-1)^{n}}\right\|_{1 \leq i, j \leq m}
$$

Where we define $A_{0}^{(r)}(n)=1$. Then

$$
\begin{equation*}
-L i_{n}(-z)={\underset{K}{k}}_{\infty}^{\infty} \frac{a_{n, k} z}{1} \tag{6}
\end{equation*}
$$

With

$$
\begin{equation*}
a_{n, 1}=1, \quad a_{n, 2 m}=-\frac{A_{m}^{(1)}(n) A_{m-1}^{(0)}(n)}{A_{m}^{(0)}(n) A_{m-1}^{(1)}(n)}, \quad a_{n, 2 m+1}=-\frac{A_{m-1}^{(1)}(n) A_{m+1}^{(1)}(n)}{A_{m}^{(0)}(n) A_{m}^{(1)}(n)} \tag{7}
\end{equation*}
$$

Proof. Consider the function

$$
\phi_{n}(t)= \begin{cases}0, & t=0 \\ \frac{1}{(n-1)!} \int_{0}^{t}\left(\log \left(\frac{1}{x}\right)\right)^{n-1} d x, & 0<t \leq 1 \\ 1, & t>1\end{cases}
$$

For $n=1$, the integrand is just 1 , so it is clearly integrable and $\phi_{n}(t)$ is continuous. Where $n \in \mathbb{N}$. Prudnikov [7] gives us

$$
\int_{\epsilon}^{t}\left(\log \left(\frac{1}{x}\right)\right)^{n-1} d x=\sum_{k=0}^{n-1}(-1)^{k} \frac{(n-1)!}{k!}\left(t(\log t)^{k}-\epsilon(\log \epsilon)^{k}\right)
$$

We apply L'Hôptial's rule to get that $\epsilon \log ^{k} \epsilon \rightarrow 0$ as $\epsilon \rightarrow 0$. So

$$
\begin{equation*}
\int_{0}^{t}\left(\log \left(\frac{1}{x}\right)\right)^{n-1} d x=\sum_{k=0}^{n-1}(-1)^{k} \frac{(n-1)!}{k!} t \log ^{k} t \tag{8}
\end{equation*}
$$

L'Hôpital's rule gives that $\phi_{n}(t) \rightarrow 0$ as $t \rightarrow 0^{+}$and $\phi_{n}(t) \rightarrow 1$ as $t \rightarrow 1^{-}$. For $0<t \leq 1$, $\log \left(\frac{1}{x}\right) \geq 0$ and continuous and, thus, integrable, so the integral is monotonically increasing and continuous on $[0,1]$. Further, $\phi_{n}(t) \in \Phi(0, \infty)$.

Consider the following integral, called the Stieltjes transform of $\phi_{n}(t)$.

$$
\begin{equation*}
f_{n}(z)=\int_{0}^{\infty} \frac{d \phi_{n}(t)}{z+t} \tag{9}
\end{equation*}
$$

Where $z \notin[-\infty, 0]$. Then by (3.3), the integrand is integrable with respect to $\phi_{n}(t)$. Further, since $\phi_{n}(t)$ is continuously differentiable on $[0, \infty)$, by theorem (3.4), we have that

$$
f_{n}(z)=\frac{1}{(n-1)!} \int_{0}^{1} \frac{1}{z+t}\left(\log \left(\frac{1}{t}\right)\right)^{n-1} d t
$$

We then substitute $x=\log \left(\frac{1}{t}\right)$. This gives us that $t=e^{-x}$ and $d t=-e^{-x} d x$. So

$$
f_{n}(z)=\frac{1}{(n-1)!} \int_{\infty}^{0} \frac{x^{n-1}}{z+e^{-x}}\left(-e^{-x}\right) d x=\frac{\frac{1}{z}}{(n-1)!} \int_{0}^{\infty} \frac{x^{n-1}}{e^{x}+\frac{1}{z}} d x
$$

This a form of the Fermi-Dirac integral, which has a known polylogarithm representation. In our case

$$
f_{n}(z)=-L i_{n}\left(-\frac{1}{z}\right)
$$

Using the series representation of the polylogarithm (1), we get, for $|z|>1$, the following.

$$
f_{n}(z)=-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{n} z^{k}} \Longleftrightarrow z f_{n}(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)^{n} z^{k}}=\sum_{k=0}^{\infty} \frac{c_{n, k}}{z^{k}}
$$

Where we have let $c_{n, k}=\frac{(-1)^{k}}{(k+1)^{n}}$. Further, Markov tells us there exists a corresponding modified S-fraction that converges to $z f_{n}(z)$ for all $z \in \mathbb{C} \backslash[0,-1]$ and even tells us that

$$
\begin{equation*}
c_{n, k}=(-1)^{k} \mu_{n, k} \tag{10}
\end{equation*}
$$

Where $\mu_{n, k}=\frac{1}{(n-1)!} \int_{0}^{1} t^{k}\left(\log \left(\frac{1}{t}\right)\right)^{n-1} d t$.
Jones and Thron [5] give us that whenever a series $S=\sum_{k=0}^{\infty} \frac{c_{k}}{z^{k}}$ corresponds to a modified C-fraction $C={\underset{K}{K}}_{\infty}^{\infty} \frac{a_{k}}{1}$ at $z=\infty$, we know that

$$
a_{1}=c_{0}, \quad a_{2 m}=-\frac{H_{m}^{(1)} H_{m-1}^{(0)}}{H_{m}^{(0)} H_{m-1}^{(1)}}, \quad a_{2 m+1}=-\frac{H_{m-1}^{(1)} H_{m+1}^{(0)}}{H_{m}^{(0)} H_{m}^{(1)}}
$$

Which is exactly what we have, except

$$
a_{n, 1}=1, \quad a_{n, 2 m}=-\frac{A_{m}^{(1)}(n) A_{m-1}^{(0)}(n)}{A_{m}^{(0)}(n) A_{m-1}^{(1)}(n)}, \quad a_{n, 2 m+1}=-\frac{A_{m-1}^{(1)}(n) A_{m+1}^{(0)}(n)}{A_{m}^{(0)}(n) A_{m}^{(1)}(n)}
$$

With each $A_{m}^{(r)}(n)$ as described in the main theorem. We then have

$$
z f_{n}(z)=\frac{a_{n, 1}}{1+\frac{a_{n, 2}}{z+\frac{a_{n, 3}}{1+\frac{a_{n, 4}}{z+\cdots}}}}
$$

Dividing both sides by z and simple factoring gives us

$$
f_{n}(z) \cong \frac{a_{n, 1}(1 / z)}{1+\frac{a_{n, 2}(1 / z)}{1+\frac{a_{n, 3}(1 / z)}{1+\frac{a_{n, 4}(1 / z)}{1+\cdots}}}}={\underset{K}{K}}_{\infty}^{\infty} \frac{a_{n, k}(1 / z)}{1}
$$

Thus, $-L i_{n}(-1 / z)={\underset{K}{K}}_{\infty} \frac{a_{n, k}(1 / z)}{1}$. So

And we are done.

5 Additional Results

We conclude with some calculations. Using our results, we may immediately use our results for $-L i_{1}(-z)=\log (1+z)$ and $-L i_{n}(-1)=\left(1-2^{1-n}\right) \zeta(n)$, for integers $n \geq 2$. Cvijović works out the first of these for us.

$$
\log (1+z)={\underset{k=1}{\infty} \frac{a_{1, k} z}{1}}_{1}
$$

Where

$$
a_{1,1}=1, \quad a_{1,2 m}=\frac{m}{2(2 m-1)}, \quad a_{n, 2 m+1}=\frac{m}{2(2 m+1)}
$$

Take $z=1$. Then we should have an approximation for $\log (2)$. We have

$$
\left\{a_{1, k}\right\}_{k=1}^{11}=\left\{1, \frac{1}{2}, \frac{1}{6}, \frac{1}{3}, \frac{1}{5}, \frac{3}{10}, \frac{3}{14}, \frac{2}{7}, \frac{2}{9}, \frac{5}{18}, \frac{5}{22}\right\}
$$

So $\log (2) \approx 0.69314721238833921$. The more precise value is $\log (2) \approx 0.6931471805599453$. For $z=2$, that is, $\log (3)$, we multiply each of the $a_{1, k}$ by 2 . This gives us an approximation $\log (3) \approx 1.0986132368628543$ as compared to the more precise $\log (3) \approx 1.0986122886681098$. More appropriately, let $z=e-1$. Using this value will, of course, give us an exact value for $\log (1+z)=\log (e)=1$ to compare to. We get $\log (e) \approx 1.0000003205889758$. We may even let $z=e i-1$. This gives $\log (i e) \approx 1.0003005411960346+1.5698739723830915 i$. The exact value of $\log (i e)=1+i \frac{\pi}{2}$.

Using Mathematica v.6, we calculate the first 6 numerators of $a_{n, k}$ for $1 \leq n \leq 10$ (attached).

$n \backslash k$	1	2	3	4	5	6
1	1	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{5}$	$\frac{3}{10}$
2	1	1	$\frac{7}{76}$	17	647	${ }_{294777}^{10}$
3	1	${ }_{1}^{4}$	$\begin{array}{r}36 \\ \hline 37 \\ \hline 16\end{array}$	$\begin{array}{r}63 \\ \quad 217 \\ \hline 9\end{array}$	$\begin{array}{r}2975 \\ 30271 \\ \hline\end{array}$	${ }_{1566914917}^{10900}$
4	1	8	${ }^{216}$	999	143375 2081687	${ }^{\frac{65658807000}{1083}}$
4	1	16	$\stackrel{1296}{ }$	$\stackrel{2835}{26281}$	$\stackrel{1078475}{1097}$	${ }^{\frac{108131854550000}{50}}$
5	1	$\frac{1}{32}$	$\frac{781}{7776}$	$\frac{26281}{189783}$	$\frac{10916749081}{64142065625}$	$\frac{764501700472728669}{40966154568200000}$
6	1	$\frac{1}{64}$	$\frac{3367}{4665}$	$\frac{38471}{250619}$	$\underline{1367030273}$	862205866965201996
7	1	$\frac{1}{64}$	$\begin{array}{r}46656 \\ +1497 \\ \hline 270076 \\ \hline\end{array}$	$\begin{array}{r}350649 \\ \hline 685817 \\ \hline 182890 \\ \hline\end{array}$	9326890625 37000803685637	1426598935102163283511537996051219
8	1	$\frac{1}{128}$	279936 58975 1	31048839 5253901	2978948746015625 148194215774887	9937759350909637457290000000 4871373918859752566152252793
		$\overline{256}$	${ }^{1679616}$	$\begin{array}{r}77386995 \\ \hline 53202761\end{array}$	${ }_{1481423937552734375}$	389298869226947292093500000000 370688103001609368309746961803079
9	1	$\frac{1}{512}$	10077696	$\frac{25372359863}{47}$	$\frac{148129406985162109375}{17120}$	$\frac{3}{34104132476517440790161093000000000 ~}{ }^{\text {a }}$
10	1	$\frac{1}{1024}$	$\frac{989527}{60466176}$	$\frac{219367507}{5311870893}$	$\frac{1377033203006937287}{192711355734365234375}$	$\frac{2841818777412983506316725367087919267}{30207634079985595577913335090000000000}$

With the above table, we calculate the 6th approximants F_{6} for a given n of the continued fraction expansion of the Riemann zeta function $\zeta(n)$. Below is a table of values for $2 \leq n \leq 10$ accompanied by the values found using Mathematica's internal command.

n	F_{6}	Mathematica
2	1.6448969002937126	1.6449340668482262
3	1.2020463030724917	1.2020569031595942
4	1.082320277569941	1.082323233711138
5	1.0369270009498681	1.0369277551433698
6	1.0173428854434825	1.017343061984449
7	1.008349239007861	1.0083492773819227
8	1.004077348357326	1.004077356197944
9	1.0020083913041948	1.0020083928260821
10	0.9990395073157157	1.0009945751278178

References

1. T. M. Apostol, Mathematical Analysis (2nd Edition), Adison-Wesley, 1974
2. M. Barigozzi, http://barigozzi.eu
3. D. Cvijović and J. Klinowski, Continued-Fraction Expansions for the Riemann Zeta Function and Polylogarithms, Proceedings of the American Mathematical Society 125 (1997), 25432550
4. G. Folland, Advanced Calculus, Prentice-Hall, New Jersey, 2002
5. W. B. Jones and W. J. Thron, Continued Fractions: Analytic Theory and Applications, Addison-Wesley, 1980
6. O Perron, Die Lehre von den Kettenbrüchen (3rd edition), Vol. I and II, Teubner, Stuttgart, 1954 and 1957
7. A. P. Prudnikov, Yu. A Brychkov and O. I. Marichev, Integrals and Series, Vols. 1 and 3, Gordon and Breach Science Publ., New York, 1986 and 1990
