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1. Abstract 
 

At first glance, one might not think that the mathematical field of algebra and computer science 

are particularly related.  After all, algebra deals with details of sets and their operations and 

computer science deals with writing programs, right?  If you focus on the basis of computer 

science, however, you will see that it involves a lot of algebra.  Computer programs have to be 

computable to work properly, and that requires that you write in the proper language - syntax, 

etc.  The theoretical abstractions make languages easier to manipulate with mathematics and - 

guess what - are basically sets with operators.  In the first two sections we will cover the 

necessary algebra and apply it to the set of languages to form a semiring.  In the third section we 

introduce formal power series and how they become a semiring under addition and Cauchy 

product.  In the fourth section, we prove that the semiring of languages is isomorphic to the 

semiring of formal power series.  Hopefully this introduction will fascinate people enough that 

they pursue the topic further, into the (harder) textbooks on the subject.  It certainly did so for 

me. 

 

 

2. Background 
 

Unfortunately, as is typical, each field has developed its own distinct notation.  For the purposes 

of this paper, I will use a consistent notation so that readers may more easily see the parallels 

between the two approaches.   

 

2.1 Algebra 
 

Algebra is typically used to describe systems of operators and the sets they operate on.  Because 

of this, algebra forms the backbone of this topic.  For this paper, we will need the following basic 

definitions. 

 

Definition 2.1.1 A monoid , ,M   is a set M, a product operator " ", and an identity element 

 , such that: 

 for any , ,a b c M , 

 (1) a b M   (closure) 

 (2) ( ) ( )a b c a b c  (associativity) 

 (3) a a a    (identity element) 

 

Note: Since the operator " " looks like multiplication and can be quite similar, the symbol is 

often dropped and the elements of M are simply written next to each other.  That is, a b ab  
and ( ) ( )a b c a bc . 

 

Definition 2.1.2 A monoid is commutative if ab ba for all ,a b M . 
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For example, ,  multiplication,1 is a commutative monoid because the natural numbers are 

closed under multiplication, multiplication is associative and commutative, and 1 times any 

number is the original number. 

 

Definition 2.1.3 The star of set X, denoted *X , is the set of all possible finite length sequences 

of zero or more elements of X, where the finite length sequence is constructed using the product 

operator defined by a monoid, and the new monoid is called a free monoid. 

 

Definition 2.1.4 A semiring , , ,0,1A   is a set A, two operators, and their respective identity 

elements such that for all , ,a b c A  

 (i) , ,0A   is a commutative monoid 

  (1) a b A     (closure) 

  (2) ( ) ( )a b c a b c      (associativity) 

  (3) 0 0a a a      (identity element) 

  (4) a b b a     (commutative) 

 (ii) , ,1A  is a monoid  (again the dot is usually represented by placing elements of A  

  side-by-side) 

  (1) ab A   (closure) 

  (2) ( ) ( )a bc ab c  (associativity) 

  (3)1 1a a a    (identity element) 

 (iii) ( )a b c ab ac     (distributivity) 

 (iv) ( )a b c ac bc     (distributivity) 

 (v) 0 0 0a a     (zero element) 

 

 

2.2 Language Theory 
 

Computer science has developed complex methods to describe the languages that can be 

recognized by various types of machines.  Of course, every machine has a mathematical basis, so 

the basic ideas are similar to familiar mathematical concepts.  For this paper, we will need the 

following definitions. 

 

Definition 2.2.1 An alphabet   is a nonempty, finite set, whose elements are the letters of the 

alphabet. 

 

Normally, each letter of an alphabet is written as one character.  Two particularly common 

alphabets are  , ,a b c  and  0,1  . 

 

Definition 2.2.2 A string is a finite sequence of letters. The empty string  is a string containing 

zero characters. 

 

Definition 2.2.3 The concatenation of two strings ,a b , denoted by ab, is an associative 

operator that converts the two strings into one string by making the first letter of b follow the last  

letters of a. 
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Note that because  is a string,   for any  . 

 

Definition 2.2.4 The length of a string w, denoted w , is the number of letters in w.  Each letter 

is counted as many times as it occurs. 

Ex. 0  . 5abaac  . 4aaaa  . 

 

This means letters are essentially strings of length one. 

 

Lemma 2.2.5 The empty string is the identity element for the operation of concatenation.   

Proof: To show that  is the identity for concatenation for an alphabet  , we must show that 

a a a   for any string a over  . However, this is true because  contains no letters and has 

zero length, so it changes neither defining characteristic of the string a, whichever side it was 

added to, so a a a   . 

□ 

 

As in definition 2.1.3, the starred set *  is the set of all finite length strings that can be 

constructed by concatenating a finite number of elements of  .  The resultant set is the infinite 

set * . 

 

Since * is closed under concatenation, concatenation is associative, and  is the identity element 

for concatenation of strings, *,  concatenation, is a free monoid.  

 

 

Definition 2.2.5 A language L over the alphabet  is a subset of the set * .   

 

For example, one language containing a finite number of elements over the alphabet  ,a b   is 

 1 , , ,L a aa b aba .  An example of a language containing an infinite number of elements over 

the alphabet  0,1  is  *

2 | the letter 1 occurs in  an even number of timesL w w  .  Notice 

that the empty language  is distinct from the language containing only the empty string,   . 

 

Since a language is a set, we can use the normal set definitions of union, intersection, and 

complementation.   

 

The set of all possible languages over an alphabet  is the power set of * , denoted  * .  

Notice that since the power set contains all possible subsets of * ,  * is closed under union 

of languages over the same alphabet.   
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Further,  is an identity element for the operation of union over  * since L L L  .  

From the normal definition of sets, union is associative and commutative.  Thus, we have shown 

that  * , ,    satisfies all the conditions to be a commutative monoid. 

Definition 2.2.6 The concatenation of two languages 1 2,L L , denoted 1 2L L , is defined as 

 1 2 1 2 1 1 2 2|  and L L w w w L w L   . 

 

For example, let  , , , , , ,0,1, ,9a b c y z    ,    1 2, 334,335,336L math L  .  Then 

 1 2 334, 335, 336L L math math math . 

 

Notice that since the power set contains all possible subsets of * ,  * is closed under 

concatenation of languages over the same alphabet.  Further, since concatenation is simply 

linking strings together in order, it does not matter which strings are linked first, so 

concatenation of languages is associative. 

 

Also,   is an identity element of concatenation of languages because    L L L   .  

 

Thus,    * , ,     is a monoid.  

 

Lemma 2.2.7 Concatenation of languages is distributive over union of languages 

Proof: First, because concatenation is not commutative, we must show both that 

( ) ( ) ( )L X Y L X L Y and that ( ) ( ) ( )X Y L X L Y L .  However, the proofs are 

nearly identical, and we will leave the second to the reader.  Note that in either case if one side 

equaled  , then either L  or X Y  , which causes the other side of the equation to be 

 as well.  Thus, suppose that both sides contain at least one element. 

 

First, we will show that ( ) ( ) ( )L X Y L X L Y .  Let  ( )w L X Y .  Because w is 

in a set that is a concatenation of two languages, we know that for some 1 2,w L w X Y  , 

1 2w w w .  Since 2w X Y , 2w X or 2w Y .  Then, either ( )w L X  

or ( )w L Y , but then by the definition of union,  ( ) ( )w L X L Y . 

 

Now we will show that ( ) ( ) ( )L X Y L X L Y .  Let  ( ) ( )w L X L Y . Then by 

definition of union of languages, ( )w L X or ( )w L Y .  Then by the definition of 

concatenation, either there exists 1 2w w w  such that 1w L and 2w X or 1w L and 2w Y .  

However, that is the same as saying that there exists 1 2w w w  such that 1w L and 2w X Y .  

That is,  ( )w L X Y . 

□ 
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Lemma 2.2.8 For any language L, L L   

Proof: We will use proof by contradiction.  Suppose L     (the other case is nearly 

identical).  Then by the definition of concatenation, there exists some  w L  such that we 

can split w into two strings 1 2,w w such that 1 2w w w , 1w L , and 2w  .  However, the last 

result is clearly incorrect because there are no strings in the empty set.  Thus, it must be that 

there are no strings in the concatenation of the empty set and a language L.  That is,

L L  . 

□ 

 

 

Thus,    * , , , ,     is a semiring. 

 

 

Definition 2.2.8 The star of a language, denoted *L , is the union of L concatenated with itself a 

finite number of times.  That is, *

0

i

i

LL


 , where iL represents L concatenated with itself i times.  

i.e. 
 times

i

i

L L L L L L .  We define for 0i  ,  iL   and 1L L  

 

 

 

3 Isomorphism Connects Algebra and Language Theory 
 

3.1 Formal Power Series 
 

Because * consists of all finite length strings of elements of  , we can list those strings in 

order, sorting first by length of string then by "alphabetical" order.  In fact, any specific ordering 

of * works for this purpose, but "alphabetical" order is simple to picture.  For example, in the 

alphabet  0,1  , we can order the elements first by string length and then by increasing binary 

number: 

 * : 0 1 00 01 10 11 000 001 010 011  

Now, consider the language  * | there is an even number of ones in L w w  .  Because L is a 

subset of * , a way to describe L would be to say, for each element of * , whether that element 

is in L or not.  We will use the convention that if an element of * is in L, then it is described by 

a 1, and if it is not in L, then it is described by a 0:  

 

* : 0 1 00 01 10 11 000 001 010 011

: 1 1 0 1 0 0 1 1 0 0 1L
 

 

Some other simple languages become: 
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* : 0 1 00 01 10 11 000 001 010 011

1 0 0 0 0 0 0 0 0 0 0

: 0 0 0 0 0 0 0 0 0

:

0 0

 

 

This sequence of 0's and 1's is called the characteristic sequence for L.  When the characteristic 

sequence is considered in its own right, it is denoted r, and L is called the support of r, denoted 

( )supp r .  It would be convenient if we could represent this more concisely, and formal power 

series is the answer.  A formal power series is written as an infinite sum and looks very similar to 

a standard power series; however, we are not actually computing the sum of the terms. The sum 

notation is used because of the amazing similarities in how operators are applied.  Instead of 

indexing the term in the formal power series by the power of the variable, it is indexed by the 

variable w as w goes over the (countably infinite) elements of * .  Thus, we can write the 

characteristic sequence r as 

 
*

( )
w

Lr w w


   

where ( )L w is the coefficient for the w'th term and is a function depending both on the element 

*w and the language *( )L    Notice that ( )L w  is only ever zero or one.  Since the 

coefficient ( )L w is a simple, two-valued function, it is a Boolean function.  Thus, the set of all 

possible characteristic sequences is written * , where the is for the use of the Boolean 

numbers. 

 

We now have another notation for a language.  That is,  | ( ) 0LL w w  .  Since we are only 

considering formal power series with Boolean coefficients, this is an identical definition to 

 | ( ) 1LL w w  . 

 

Definition 3.1.1 Two formal power series 1 2,r r are equal if and only if 
1

*

1 ( )
w

Lr w w


   and 

2
*

2 ( )
w

Lr w w


   , where 
1 2
( ) ( )L Lw w   for all *w . 

 

 

Now, we will define some operators for formal power series.  Let 1r be the formal power series 

representation of 1L and similarly for 2r .   Like we do with power series, we define the sum 

1 2
*

1 2 ( )L L

w

r r w w






    with

 
1 2 1 2

( ) ( ) ( )L L L Lw w w     , where 1+1=1, but the other numbers 

add as expected.    

 

 

Define 
*

0 0
w

w


  .  Then, because this changes none of the entries of another formal power 

series when they are added together, 0 is the additive identity in * .  Further, since in 
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Boolean arithmetic 1 0 0 1 1    , etc. , the sum of formal power series is a commutative 

operator.  That is,  * , ,0  is a commutative monoid. 

 

Now, because each element of * is a finite length string, there is a finite number of ways to split 

an element w into two parts. That is, a finite number of distinct possible strings 1 2,w w such that 

1 2w w w .  For example, there are three ways to split the two character string 

: / ; / ; /w ab ab a b ab  . 

 

Define the (Cauchy) product of two formal power series 

  
1 2

*

1 2 L L

w

r r w w 



  , where    
1 2 1 2

1 2

1 2( ) ( )L L

w

L L

w w

w w w  



   

where the multiplication 
21L L  follows the normal rules for multiplication of natural numbers. 

 

 

Lemma 3.1.2 The formal power series for  L  is the multiplicative identity for formal power 

series. 

Proof: For all 
*w , w w , so we can split w into two parts,   and w.  If 

2
( ) 1L   , then all 

the coefficients in 1r that were 1 will still be 1 because there will be at least one term in the sum 

in 
1 2L L that is 1.  If 

2
( ) 1L w  only for  , then there will never be a time when a coefficient in 1r

is zero but the relevant term in 1 2r r is 1.  Thus, the formal power series for  L  is the identity 

for multiplication in formal power series.  For simplicity, we will represent this power series by 

 . 

□ 

 

 

We can similarly quickly show that the distributive property holds, and it is clear that the Cauchy 

product of any series with 0 is 0.  Thus, * , , ,0,   is a semiring. 

 

 

 

3.2 Semiring Homomorphisms  
 

At least in the texts I found, semirings and their properties were used nonchalantly without 

clearly defining what they were.  Because of this lack, I constructed definitions to produce the 

results.    

 

Definition 3.2.1 A semiring homomorphism between two semirings , , ,0 ,1A A A A AA S   and 

, , ,0 ,1B B B B BB S   is a function : A Bf S S where for , Aa b S  

 (i) ( ) ( ) ( )A Bf a b f a f b    



 
9 

 (ii) ( ) ( ) ( )A Bf a b f a f b    

 (iii) (0 ) 0A Bf    

 

Definition 3.2.2 A semiring isomorphism between two semirings A and B is a semiring 

homomorphism where the function is also bijective. 

Theorem 3.2.3 If there is a semiring isomorphism f from , , ,0 ,1A A A A AA S   to 

, , ,0 ,1B B B B BB S   , then there is an inverse semiring isomorphism g from B to A. 

Proof: Since f is a bijection, we immediately have that we can define 1( ) ( )g b f b a  for all 

Bb S and Aa S .  Further, that is true for the zero element of both rings.   

 

Now let ,x y B .  Since f is bijective, there exist ,u v A  such that ( )f u a and ( )f v b .  

Further, since f is an isomorphism, ( )f u v a b   .  Taking f-inverse of both sides, we have 
1( )u v f a b   .  However, 1( ) ( ) ( ) ( )g a b u v f a b g a b       . The process is similar 

for multiplication. 

□ 

 

 

Theorem 3.2.4 * , , ,0,   and    * , , , ,     are isomorphic.    

For simplicity, we will call the first semiring B and the second semiring P.  We will show they 

are isomorphic by finding the necessary function from B to P. In fact, we will show that the 

support of a formal power series, as is defined in the formal power series section, is the 

necessary function.  First we will show that :supp B P satisfies the requirements for a ring 

homomorphism, then show that it is one-to-one and finally onto. 

 

Recall that the support of a power series r can be described as  * | ( ) 0Lw w  . 

 

(i) ( ) ( ) ( )a b a bsupp r r supp r supp r   

When adding two formal power series together, ( ) 1a b w   if and only if ( ) 1 or ( ) 1a bw w   .  

Then, by taking the support, ( )a bw supp r  if and only ( )aw supp r or ( )bw supp r .  However, 

that is identical to saying ( )a bw supp r  if and only  ( ) ( )a bw supp r supp r .  Thus, we have 

that ( ) ( ) ( )a b a bsupp r r supp r supp r  . 

 

 

(ii) ( ) ( ) ( )a b a bsupp r r supp r supp r   

When multiplying two formal power series together, 1( )ab w  if and only if there was at least 

one way to split w such that 1 2w w w where 1 1( )a w  and 2 1( )b w  .  Then, taking the 

support, ( )abw supp r  if and only there exists a split 1 2w w w such that 1 ( )aw supp r and 
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2 ( )bw supp r .  However,  ( ) ( )a bw supp r supp r if and only if there exists such a split.  Thus, 

( ) ( ) ( )a b a bsupp r r supp r supp r  . 

 

 

(iii) (0)supp   

This is obvious since the power series contains no nonzero coefficients, and thus the support can 

contain no strings. 

Thus, support is a semiring homomorphism.  Now, there are two conditions left to check to show 

support is a semiring isomorphism. 

 

 

Support is 1-1 

If it was not 1-1, then there exists at least two distinct formal power series 1 2,r r where 

1 2( ) ( )supp r supp r .  However, that would imply that    *

2

*

1| ( ) 1 | ( ) 1w w w w      .  

Since the only other option for ( )w is 0, we also have that 

   *

2

*

1| ( ) 0 | ( ) 0w w w w      , so each w has a coefficient of either 0 or 1, and for all 

*

1 2, ( ) ( )w w w   , so 1 2r r .  However, this contradicts the assumption that 1r and 2r are 

distinct.  Thus, the support function must be one-to-one. 

 

 

Support is onto 

Choose some  *L  .  Then we can determine the characteristic sequence for L, and thus we 

can define 
*

( )
w

LLr w w


  for any  *L  .  That is, the support function maps the Boolean 

formal power series onto the set of languages over the same alphabet. 

□ 

 

 

 

4 Conclusion and Beyond  
 

This is just one tiny start on the connection between formal power series and languages.  It is 

typical to continue on by discussing the various closed subsets of languages and their power 

series definitions.  Further, it is common to begin to mathematically define machines - roughly 

directed graphs that start and stop in the right places with linear algebra and the such.  However, 

the next step from this paper requires only a few more definitions to describe.   

 

Definition 4.1 A formal power series represents a polynomial if only a finite number of terms 

have nonzero coefficient ( )L w . 
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Definition 4.2  A power series r belonging to * is called rational (over  ) if r can be 

obtained from polynomial elements of * by finitely many applications of the sum, product, 

and star formal power series operations.  The family of such rational power series is denoted by 
*rat  . 

 

In fact, *rat  is the smallest closed subsemiring of * containing all the polynomials 

over  , although the proof is beyond the level this paper.  However, that implies that *rat 

is generated by applying the operations of sum, product, and star in sequence to polynomials.  In 

fact, we merely need the polynomials representing each individual letter in   and the 

polynomial representing  , and the power series 0.  

 

 

Now we turn to the computer science side of things. 

 

Definition 4.3  R is a regular expression over the alphabet   if R is one of the following or 

generated from the following by a finite number of language operations of union, concatenation, 

and star.    

 1.  a , for some a  

 2.    

 3.   

 

 

Definition 4.4  The set of possible strings generated by a regular expression is called a regular 

language. 

 

The next step is to show that regular languages represented by regular expressions and by 

rational power series represent the same set.  That is, there is an isomorphism between the two 

subsemirings.  This identity is usually proved by way of a set of machines that also deal with the 

same set of languages, but mathematically it appears this direct approach of algebra might be 

simpler.   
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