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1 Introduction

Multivariable complex analysis is different from its single variable sister; there
“is more involved than merely saying ‘now let n > 1.’ ” Bell [1] goes over
several basic results in multivariable complex analysis.

We examine one of them in particular, which is that the Riemann mapping
theorem does not hold in dimension n > 1. We roughly sketch out the language
and tools needed to go over this result, and look at three different proofs of the
result.

2 Complex Analysis in Several Variables

2.1 Basic Terminology

We begin with some basic vocabulary and results.

Definition 2.1. A complex variable z ∈ Cn is an n-tuple (z1, ..., zn), with
zj ∈ C. The zj’s are called the components of z.

Definition 2.2. Multiplication on Cn is defined componentwise; that is, for
z, w ∈ Cn, zw = (z1w1, ..., znwn). Multiplication by scalars is also what you
would expect: for z ∈ Cn, ζ ∈ C, ζz = (ζz1, ..., ζzn).

Definition 2.3. A function f : Cn → Cn is holomorphic (equivalently, ana-
lytic) if it satisfies the n-dimensional Cauchy-Riemann equations, i.e. it satisfies
∂/∂z̄jf = 0, for 1 ≤ j ≤ n.

Definition 2.4. A biholomorphic (equivalently, univalent) function f : Ω1 →
Ω2, Ω1 ∈ Cn, Ω2 ∈ Cm is a function f which is bijective, holomorphic, and
detuCf(z) 6= 0, where uC is the complex Jacobian with entries uij = ∂fi

∂zj
.

Definition 2.5. A biholomorphic map f : Ω → Ω which takes Ω to itself is
called an automorphism.
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It will be useful that the complex Jacobian behaves like its real counterpart
in the following respect:

Lemma 2.1 ([8, p. 11]). |u|2 is equal to the determinant of the Jacobian of f
as a function of 2n variables on R2n.

The proof follows from the Cauchy-Riemann equations. Here we will prove
the one-dimensional case because it is easier to compute; however, the general-
ization to n dimensions should be clear.

Proof. Let f(z) = u + iv be analytic on a domain Ω. We can treat Ω as a
domain in R2 (by taking coordinates z = (<(z),=(z)) = (x, y)) and f as a map
from Ω to R2, with components f(x, y) = (u(x, y), v(x, y)). The determinant of
the Jacobian is

detu =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

By the Cauchy-Riemann equations we replace the x derivatives with y deriva-
tives:

detu =
(
∂v

∂y

)2

+
(
∂u

∂y

)2

=
∣∣∣∣∂u∂y − i∂v∂y

∣∣∣∣2
By [3, p. 47 (3.2)], we have ∣∣∣∣∂u∂y − i∂v∂y

∣∣∣∣2 = |f ′(z)|2

The generalization to n-dimensions should be clear.

Corollary 2.2. The change of variables formula on Cn is then φ(w)dw =
u(z) · φ(f(z))dz. This follows from the formula for the real change of variables
[2, Theorem 4.41] and the above lemma.

Definition 2.6. A multi-index α is an ordered n-tuple of non-negative integers
(α1, α2, ..., αn).

The following notation is standard:

|α| =
n∑
j=1

αj

α! =
n∏
j=1

αj !

zα =
n∏
j=1

z
αj
j

2



Definition 2.7. Let Ω ⊂ Cn. Suppose that zeiθ ∈ Ω for all z ∈ Ω and θ ∈ R.
Then Ω is called circular.

Definition 2.8. The polydisc Pn(a, r) is defined as the Cartesian product of n
discs of radius r, each centered at ai, i.e. the set {z ∈ Cn : |zi − ai| < r, i =
1, 2, ..., n}.

The ball Bn(a, r) is defined as the ball of radius r centered at a, i.e. {z ∈
Cn :

∑n
i=1 |zi − ai|2 < r2}.

It is generally obvious from context what n is, so we will drop the subscripts.
For n = 1, these obviously refer to the same set; however, in general they do

not. By convention, the unit disc B(0, 1) = P (0, 1) is denoted by D. The “unit
(n)-polydisc” refers to the set P (0, 1), and the “unit (n)-ball” refers to B(0, 1).

Remark The unit polydisc and the unit ball are both clearly circular domains.

It turns out that it is in fact the polydisc which is easier to work with,
as some of the theorems from one dimension are most easily adapted to the
polydisc, rather than the ball. For example, the Cauchy integral theorem is
defined as follows:

Theorem 2.3 (The Cauchy Integral Formula on polydiscs [6, p. 4]). Suppose
f(z) is holomorphic in each component on the closure of the unit n-polydisc
P (0, 1). Then for ζ ∈ P (0, 1),

f(ζ) =
1

(2πi)n

∫
|zn|=1

· · ·
∫
|z1|=1

f(z)
n∏
j=1

dζj
zj − ζj

There is an analogous integral over the unit ball, but it does not concern us
here.

It is an easy result in [8, p. 4] that f : Ω1 → Ω2, Ω1,Ω2 ⊂ Cn holomorphic
can be locally expanded as a power series

f(z) =
∑
α

cαz
α

where α ranges over all multi-indices. There exists a neighborhood (for practical
purposes it will be a small polydisc) around each z0 such that the expansion
around z0 is absolutely and uniformly convergent for z in that neighborhood.

The coefficients cα are given by

cα =
1

(2πi)n

∫
P (z0,ε)

f(ζ)ζ̄αdζ1 · · · dζn

Here, the integral is over a small polydisc of radius ε.
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2.2 Homogeneous Functions

Definition 2.9. A polynomial P (z) is homogeneous of degree k if for every
ζ ∈ C, z ∈ Cn, P (ζz) = ζkP (z).

Let
f(z) =

∑
α

cαz
α

be a holomorphic function whose power series expansion is convergent in a
neighborhood of the origin (for simplicity a disc centered at the origin). Now
let

Fk(z) =
∑
|α|=k

cαz
α

Each of these Fk’s is homogeneous in z [8, p. 19]. Since f(z) converges
uniformly on some small polydisc, so we can rearrange terms and rewrite f as

f(z) =
∞∑
k=0

Fk(z)

This is called the homogeneous expansion of f .

Lemma 2.4. Let f : Ω → Ω be a holomorphic function, and Ω be a simply
connected open subset of Cn. Suppose the the homogeneous expansion of f is
convergent on some small polydisc P (α, ε), and z ∈ P (α, ε). Then

Fk(z) =
1

2π

∫ 2π

0

f(zeiθ)e−ikθdθ

Proof. Fix a z ∈ Ω. By the homogeneity of Fk(z),

f(zeiθ) =
∞∑
j=0

eijθFj(z)

Multiplication by e−ikθ and integration over θ yields

1
2π

∫ 2π

0

f(zeiθ)e−ikθdθ =
1

2π

∫ 2π

0

∞∑
j=0

ei(j−k)θFj(z)dθ

The convergence of the sum is uniform inside a sufficiently small neighborhood,
so we can move the integral inside the sum. ei(j−k)θ integrates to zero for
j − k 6= 0 so we obtain∫ 2π

0

f(zeiθ)e−ikθdθ =
1

2π

∫ 2π

0

Fk(z)dθ = Fk(z)
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2.3 The Automorphisms of B

Definition 2.10. A Mobius transformation is an automorphism of the unit
disc.

Theorem 2.5. Let ζ ∈ D. Then there exists an automorphism of the unit disc
φζ(z) such that φζ(0) = ζ.

Proof. Let φζ(z) = (ζ − z)/(1 − ζ̄z). Obviously, φζ(0) = ζ (note also that
φζ(ζ) = 0. It remains to show that this is an automorphism. First, we show it
is injective

φ′ζ(z) =
1− |ζ|2

(1 + ζz)2

Since this is nonzero inside the disc, φζ is injective by the implicit mapping
theorem.

Now, it is also surjective; explicitly, for any w ∈ D, let z = (w+ζ)/(1+ ζw).
|z| = |w + ζ|/|1 + ζw| < 1, so z ∈ D. Then φζ(z) = w so we are finished.

Corollary 2.6. The Mobius transformations act transitively on D. That is, for
any ζ, ξ ∈ D, there exists an automorphism of the unit disc φ which takes ζ to
ξ.

Proof. Take φ to be φξ ◦ φζ .

Now we want to generalize the Mobius transformations of the disc to n
dimensions.

Define φα : B → B as follows:

φ0(z) = −z

φα(z) =
α− z·α

ᾱ −
√

1− |α|2
(
α− z·α

ᾱ

)
1− z · α

; α 6= 0, α ∈ B

Here z · α indicates the usual dot product on Cn; explicitly, z · α =
∑n
j=1 zjᾱj .

It is clear that this is a holomorphism for |α| < 1, i.e. α ∈ B. It is not obvious
that this (behemoth of a definition) is the correct definition; however, Rudin [8]
assures us that it is, although he writes it in a slightly more compact form. In
particular, just like a Mobius transform, φα satisfies φα(0) = α and φα(α) = 0.
It also reduces to the Mobius transformation in the case n = 1.

Lemma 2.7 ([8, Theorem 2.2.2(v)]). φα is an involution. That is, it satisfies:
φα(φα(z)) = z

Corollary 2.8. φα is an automorphism of B.

By the lemma, φ is an involution. It is a well known fact that involutions
are bijections. It is also holomorphic; thus it is a biholomorphism from B to B.

Theorem 2.9 ([8, Theorem 2.2.3]). The set of automorphisms on B acts tran-
sitively on B.

Proof. For any ζ, ξ ∈ B take ψ(z) = φξ(φζ(z)) is an automorphism of B which
takes ζ to ξ.
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2.4 Schwarz

Now we briefly discuss the Schwarz lemma and the Schwarz-Pick theorem.

Theorem 2.10 (Schwarz lemma [3, Theorem, p. 260]). Suppose f : D → D is
a holomorphic mapping on the unit disc, f(0) = 0 and |f(z)| ≤ 1 for all z ∈ D.
The Schwarz lemma guarantees us that, for z ∈ D,

|f(z)| ≤ |z|

and
|f ′(0)| ≤ 1

Furthermore, if |f ′(0)| = 1 or |f(z)| = |z| (for any z 6= 0, z ∈ D), then
f(z) = zeiθ for some real θ.

Theorem 2.11 (Schwarz-Pick theorem [5, Theorem 1.1]). Suppose f : D → D
is a holomorphic mapping from the unit disc into itself. Then for z ∈ D,

|df |
1− |f(z)|2

≤ |dz|
1− |z|2

Proof. In the Schwarz lemma, we would like to say something about |f ′(z)| on
the whole disc. So, we want to get rid of the condition that f(0) = 0. We will
want to fix an (arbitrary) point ζ and consider the following automorphisms:

g(z) =
z + ζ

1 + ζz

h(z) =
z − f(ζ)
1− f(ζ)z

and their derivatives

g′(z) =
1− |ζ|2

(1 + ζz)2

h′(z) =
1− |f(ζ|2

(1− f(ζ)z)2

It is clear that g(0) = ζ and h(ζ) = 0. Then a new function defined by
F (z) = h(f(g(z))) indeed satisfies F (0) = 0.

Now, by the Schwarz lemma, we conclude that |F ′(0)| ≤ 1. But by the chain
rule,

F ′(0) = h′(f(ζ))f ′(ζ)g′(0) =
∣∣∣∣ dfdz

∣∣∣∣ 1− |z|2

1− |f(z)|2
≤ 1

Now we formally multiply both sides by |dz|
1−|z|2 and obtain

|df |
1− |f(z)|2

≤ |dz|
1− |z|2

as desired.
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It is a little odd to see differentials being compared to each other; for the
moment it is enough to understand this in terms of integrating over a curve.
That is, for any curve γ ∈ D, the above inequality will imply∫

f(γ)

|df |
1− |f(z)|2

≤
∫
γ

|dz|
1− |z|2

We will see soon that this can be understood in terms of a metric on D.

3 Basic Geometry

3.1 The Distance Metric

We will not do any sort of justice to the subject of differential geometry here.
A lot of our definitions may seem imprecise or ill-motivated; they can in fact
be defined precisely, but all we need for this paper is a crude sketch of some
concepts and properties.

Definition 3.1. A metric on a domain Ω is a kind of notion of distance on Ω.
Formally, it is a function d : Ω× Ω→ R+ which satisfies

1. d(x, y) ≥ 0 for all x, y ∈ Ω (it is positive semidefinite).

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) (it is symmetric).

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Ω (it satisfies the triangle in-
equality).

The triangle inequality is important, because it intuitively says that the
distance defined by the metric will tell you what the distance is over the “short-
est” possible path between two points - that is, going from x to y is faster than
stopping at z along the way.

Example 3.1. The familiar Euclidean distance on Rn defined by

d(x, y) =

√√√√ n∑
1

(xi − yi)2

obviously satisfies all the properties above.

Example 3.2. The Euclidean distance has an obvious generalization to Cn
which also satisfies all the properties above; it is defined by

d(x, y) =

√√√√ n∑
1

|zi − wi|2
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3.2 Line Elements

It will be useful to consider metrics which are defined by integration. That is,
we will want to consider metrics roughly of the form:

d(x, y) =
∫ y

x

√
ds2

At this point, ds2 is a mysterious looking thing; it is called sometimes called
the ‘line element’ and sometimes simply referred to as ‘the metric’ (although that
is shorthand). Roughly speaking, it defines the infinitesimal distance between
z and z + dz. It is kind of like the ‘infinitesimal’ form of the distance function.
Actually, the notation above with

√
ds2 is sloppy; we will define it more precisely

later, after we define the metric tensor.
Also, we don’t know at this point how to get from x to y; obviously, going

over different curves will give different results for this integral. What we really
want is to consider all curves γ between x and y and find the smallest distance
so that the metric will satisfy the triangle inequality. First we define the length
(given a line element ds) over a smooth curve γ : [0, 1] → Ω where γ(0) =
x, γ(1) = y to be

|γ|ds =
∫
γ

ds

Now we take the distance between two points to be the infimum length over
all smooth curves connecting the two points:

d(x, y) = inf
γ
|γ|ds

Remark Note that such a curve may not exist. As a simple example, on
R2 − (0, 0), the distance (as defined above) between (−1, 0) and (1, 0) is 2, but
there is no curve of length 2 connecting these points. However, we will not deal
with such ‘pathological’ domains.

Example 3.3. The Poincare line element is defined on D by

ds2
D =

|dz|2

(1− |z|)2

Indeed, this is the differential we saw earlier at the end of our discussion of
the Schwarz-Pick theorem. As an aside, this does produce a metric on D. It is
not obvious from the definition, but induces a distance between two points:

dP (z, w) = tanh−1

∣∣∣∣ z − w1− zw̄

∣∣∣∣
Now, by the Schwarz-Pick theorem we see that holomorphic maps never

increase this metric. Indeed, let f∗(ds2
D) indicate the line element

|df |2

(1− |f(z)|2)2
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The Schwarz-Pick theorem literally says in this notation that f∗(ds2
D) ≤ ds2

D!
Integration over a curve and its image tells us that the Poincare length of a curve
is never increased under the action of a holomorphic function. More precisely,

|f(γ)|P =
∫
f(γ)

|df |
1− |f(z)|2

≤
∫
γ

|dz|
1− |z|2

= |γ|P

Moreover, if f is an automorphism of D, then f is an isometry, or length-
preserving map

Lemma 3.1. If f : D → D is an automorphism, then any curve γ ∈ D satisfies

|γ|P = |f(γ)|P

In other words, the length of a curve in the Poincare metric is equal to the length
of its image under an automorphism.

Proof. We use the Schwarz-Pick theorem on f and f−1 to obtain the two fol-
lowing inequalities:

f∗(ds2
D) ≤ ds2

D

and
ds2
D = f−1∗(f∗(ds2

D)) ≤ f∗(ds2
D)

Taking the two inequalities together we conclude that f∗(ds2
D) = ds2

D and thus∫
f(γ)

f∗(ds2
D) =

∫
γ

ds2
D

3.3 Geodesics

Definition 3.2. A geodesic for a metric M is a curve γM : [0, 1]→ Ω, which is
a local minimum of distance between the two points γ(0) and γ(1), i.e. it locally
minimizes the distance function

d(x, y) =
∫ y

x

ds

As we noted before, there may not be such a curve connecting the two points.
However, for all the ‘easy’ domains we are working with, this definition is fine.
Also, note that such a curve is not necessarily unique - for example, see Example
3.5 below.

We will use the notation t 7→ γ(t) to indicate an explicit parametrization of
a geodesic. It should be clear from our definitions that the geodesic connecting
two points is the curve we want to integrate over to obtain the distance between
two points.

Because the notion of a geodesic is so intuitive, we present several examples
without verifying that they are indeed the geodesics on the metric we want to
look at.
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Example 3.4. On Euclidean n-space Rn, the geodesics are simply the straight
lines.

Example 3.5. On the sphere, the geodesic between two points is an arc of the
great circle which goes through them; a great circle is a circle on the boundary
of the sphere whose center is the same as the sphere’s center.

Note that this is not uniquely defined. In particular, there is a ‘short’ arc
connecting any two points as well as a ‘long’ one (the one going the long way
around the circle). Also, in the case that two points are antipodal, an arc of
any great circle connecting them is a geodesic!

Example 3.6. On the disc with the Poincare metric, the geodesic connecting
two points is the arc of a circle which intersects the boundary of the disc orthog-
onally.

3.4 The Metric Tensor

We now want to introduce the concept of the metric tensor. The metric tensor is
a way of defining the inner product on a domain Ω; it also gives us a convenient
way of defining the line element. It turns out that this is a natural thing to look
at, because under certain natural types of transformations, lengths and angles
are preserved.

Definition 3.3. Suppose M is an n-dimensional surface, parametrized by co-
ordinates (u1(z), ..., un(z)) and appropriate smoothness conditions, and a vector
field on the surface r(u). We may want to parametrize r in t over a curve.
A metric tensor g (often simply called ‘the metric’) is an n × n matrix whose
entries are gij(r) = ∂r

∂ui
· ∂r∂uj . Note that these notions are all well-behaved in

terms of their R2n analog (i.e., identification of uj with (xj , yj), etc.).

In the above definition, it turns out that having the complex conjugates
is the natural thing to do in order to get the correct things. This defines an
invariant inner product on the surface:

a · b =
n∑

i,j=1

aigij b̄j =
n∑

i,j=1

ai
∂r

∂ui
· ∂r
∂uj

b̄j

This definition appears to be somewhat circular since the definition involves
a dot product in the first place; the point is though that you calculate gij in one
basis and then this inner product holds in all bases. However, this is not our
concern. What this leads us to is a natural way to produce the line element,
given a metric tensor. We define the line element to be

ds2 =
n∑

i,j=1

duigijduj
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This may be formally interpreted as the square of the norm of the differential
|du|2.

Now we write the arclength of a curve (assume it is smooth) formally as:

|γ|g =
∫
γ

ds

To actually calculate this and get the desired arclength, we “parametrize in
t and take the square root” (assuming as usual that γ is a map from [0, 1] to
Ω):

|γ|g =
∫
γ

ds =
∫ 1

0

√√√√ n∑
i,j=1

dγigij(γ)dγj

=
∫ 1

0

√√√√ n∑
i,j=1

gij(γ(t))γ′i(t)γ
′
j(t)

 dt

where dγi = ∂γi(t)
∂t dt = γ′i(t)dt.

Example 3.7. In Euclidean space, the metric we want is the identity matrix.

This produces the familiar dot product:

a · b =
n∑

i,j=1

aiδijbj =
n∑
i=1

aibi

Then the line element we get is

ds2 =
n∑
i=1

dx2
i

In two dimensions, this is the familiar looking arclength for the curve γ(t) =
(x(t), y(t)):

|γ| =
∫ b

a

√
dx2 + dy2 =

∫ b

a

√
x′(t)2 + y′(t)2dt

Example 3.8 ([8, p. 51]). The Poincare metric is given by

gij(z) =
2

(1− |z|2)2
, z ∈ D

This gives rise to the Poincare line element which we saw before.

3.5 Lebesgue Basics

We must begin by introducing the notion of an L2 space. The theory of Lebesgue
integration is more or less tangential to this paper, but certain ideas are essential.
Roughly speaking, the Lebesgue measure on a subset of Euclidean space the
generalization of the volume of that subset. For the open simply connected sets
we always work with, it is essentially equivalent to the Euclidean volume.
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Definition 3.4. The L2 inner product of two functions u and v on Ω ⊂ Cn is
indicated by 〈u, v〉Ω, and stands for the integral∫

Ω

u(z) · v(z)dV (z)

Here, dV (z) is the “Lebesgue measure” on Ω. For the purposes of this
discussion we can think of it as simply being the volume element dz1dz2 · · · dzn.

Definition 3.5. We say that u(z) ∈ L2(Ω) or that is has a finite norm if
‖u‖2L2(Ω) = 〈u, u〉Ω =

∫
Ω
u(z)u(z)dV (z) <∞.

Definition 3.6. Two functions u, v ∈ L2(Ω) are orthogonal if 〈u, v〉Ω =
∫

Ω
u(z)v(z)dV (z) =

0.

Example 3.9. The monomials are orthogonal on the polydisc.

Lemma 3.2. Let fα(z) = zα, z ∈ Cn. Then the fα are in L2(P (0, 1)) and are
orthogonal.

Proof. We want to calculate 〈fα, fβ〉P (0,1).

〈fα, fβ〉P (0,1) =
∫
P (0,1)

zαz̄βdV (z)

Switch to polar coordinates and set zαii = reiαiθλαii (where λi is the unit vector
in the ith direction) and obtain

=
∫
P (0,1)

r|α+β|
n∏
i=1

ei(αi−βi)θdλi

The integral over each θ disappears unless α = β.

Lemma 3.3. Let fα(z) = zα, z ∈ Cn. Then the fα are in L2(B(0, 1)) and are
orthogonal.

Proof. The integral over each sphere of radius r is zero by [8, Proposition 1.4.8]

Lemma 3.4. Suppose h ∈ L2(B(0, 1)) is holomorphic, with power series ex-
pansion

∑
β aβz

β = h(z) around 0. Then

〈h, zα〉(B(0,1)) = cα
∂αh

∂zα
(0)

for some constant cα.
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Proof. We simply calculate it.

〈h, zα〉(B(0,1)) =
∫
B(0,1)

∑
β

aβz
β

 z̄αdV (z)

Since it is uniformly convergent, we can put the integral inside. Since monomials
zα are L2 orthogonal on the ball (as just claimed), all the terms integrate to
zero except for ∫

B(0,1)

aα|z|2|α|dV (z) = cα
∂αh

∂zα
(0)

where cα = 〈zα, zα〉B(0,1) and aα = ∂αh
∂zα (0).

Remark By [8, Proposition 1.4.9],

cα =
n!α!

(n+ |α|)!

Also, the above lemma turns out to be formally equivalent to Cauchy’s integral
formula.

We will also make reference to the following theorem.

Theorem 3.5 (Dominated Convergence Theorem). Suppose that {fn} is a se-
quence of Lebesgue measurable functions which converge pointwise to a function
f . Suppose further that the function |g| satisfies

∫
Ω
|g|dV < ∞ and |fn(z)| ≤

|g(z)| for all n ∈ N, z ∈ Ω. Then

lim
n→∞

∫
Ω

fndV =
∫

Ω

fdV

The following corollary follows obviously because boundedness implies dom-
ination:

Corollary 3.6. Suppose that fn(x) is a Lebesgue measurable function, bounded
in modulus for all n ∈ N, x ∈ Ω and that limn→∞ fn(x) = f(x) for each x ∈ Ω
(that is, fn converges pointwise to f). Then

lim
n→∞

∫
Ω

fndV =
∫

Ω

fdV

Proof. Set g(x) from the Dominated Convergence Theorem equal to supx∈Ω,n∈N |fn(x)|.

3.6 The Bergman Kernel and Metric

Definition 3.7. The Bergman space A2(Ω) is the set of holomorphic L2 inte-
grable functions on Ω.
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Lemma 3.7 ([8, Lemma 1.4.2]). The Bergman space is a Hilbert space with
inner product 〈u, v〉 =

∫
Ω
f(z)g(z)dV (z).

Now we introduce the Bergman kernel.

Definition 3.8. The Bergman kernel K : Ω × Ω → Cn is a function which
satisfies the following properties ([8, pp.40-41]):

1. It is holomorphic in one of its arguments. That is, for every fixed ζ ∈ Ω,
K(z, ζ) as a function of z ∈ Ω is an element of A2(Ω).

2. It is reproducing. That is, for every f(z) ∈ A2(Ω), f(z) =
∫

Ω
K(z, ζ)f(ζ)dV (ζ).

3. It is conjugate symmetric. That is, K(z, ζ) = K(z, ζ).

By ([8, Proposition 1.4.6]), these properties uniquely determine the Bergman
kernel on Ω. That is, for a given Ω, K(z, ζ)Ω can be calculated explicitly (in
theory).

Definition 3.9 ([8, Definition 1.4.14]). Take z ∈ Ω. The Bergman metric is
defined by

gij(z) =
∂

∂zi

∂

∂z̄j
logK(z, z)

Now, as before, if γ : [0, 1]→ Ω is smooth, define its arclength by

|γ|B(Ω) =
∫ 1

0

√√√√ n∑
i,j=1

gij(γ(t))γ′i(t)γ
′
j(t)

 dt

And again as before, for ζ, ξ ∈ Ω, define their Bergman length to be

dB(Ω)(ζ, ξ) = inf
γ : γ(0)=ζ,γ(1)=ξ,γ∈C1

|γ|B(Ω)

The Bergman metric is important because it turns out to be the natural
generalization of the Poincare metric in the sense that biholomorphic maps
preserve distance on it, as evidenced by the following proposition:

Proposition 3.8 ([8, Proposition 1.4.15]). Biholomorphic maps are isometries
of the Bergman metric. That is, let Ω1,Ω2 ⊆ Cn be regions, and f : Ω1 → Ω2

be biholomorphic. Then for all ζ, ξ ∈ Ω1,

dB(Ω1)(ζ, ξ) = dB(Ω2)(f(ζ), f(ξ))

Example 3.10 ([8, Proposition 1.4.24]). The Bergman kernel on the polydisc
is defined by

K(z, ζ) =
1
πn

n∏
j=1

1
(1− zj ζ̄j)2
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Example 3.11 ([8, Proposition 1.4.23]). The Bergman metric for the ball
B(0, 1) ⊂ Cn is:

gij(z) =
n+ 1

(1− |z|2)2

(
(1− |z|2)δij + z̄izj

)
Restricting to n = 1, we see that the Berman metric on the unit disc is then

gij(z) =
2

(1− |z|2)2

which as we saw before is the Poincare metric.

4 The Riemann Mapping Theorem for n > 1

4.1 Preliminaries

Theorem 4.1 (Riemann Mapping Theorem). If B is an open simply-connected
subset of C, then it is biholomorphic to the unit disc D = {z : |z| < 1}.

A standard proof is given in [3].
We are now prepared to go over the fact that the polydisc and the n-ball are

not biholomorphic for n > 1.

Claim 1. The Riemann Mapping Theorem does not hold in n dimensions. We
provide an example.

Theorem 4.2. There is no map φ : D(0, 1)→ B(0, 1) ⊆ C2 that is biholomor-
phic.

4.2 A Proof by Krantz

Proof. This proof is from [6, p. 54]. The proof is by contradiction. The proof
holds for C2, although it generalizes easily to arbitrary n. Let D2 denote the
unit 2-polydisc and B2 denote the unit 2-ball.

Suppose there is such a biholomorphism φ : D2 → B2. For convenience, we
will want to have φ(0, 0) = (0, 0). This is easy to ensure. We are guaranteed
that there is a unique a ∈ D2(0, 1) such that φ(a) = 0, by the biholomorphicity
of φ. However, we can always transform each D into itself by means of a Mobius
transformation; so, we can find a Mobius transformation M such that M(0) = a.
Then compose M with φ, and we might as well call this new function φ.

Now we would like to examine geodesics in the Bergman metric, as biholo-
morphisms are isometries of the Bergman metric - geodesics in the Bergman
metric are mapped to geodesics under biholomorphic maps (Lemma 3.8). On
B2, by symmetry, the geodesics are t 7→ tβ, β ∈ ∂B.

On D2, by symmetry, the geodesic from 0 in the direction (1, 1) is t 7→ (t, t).
The Cartesian product of two rotations - (z1, z2) 7→ (eiθ1z1, e

iθ2z2) - is obviously
biholomorphic, so it carries geodesics on D2 to geodesics on D2. So, we just
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map (1, 1) to (eiθ1 , eiθ2) and we see that the geodesic from 0 to that point is
t 7→ (teiθ1 , teiθ2). Let α = (eiθ1 , eiθ2) ∈ ∂D2.

We want to show that limt→1− φ(tα) exists. But φ takes geodesics to
geodesics, so φ(tα) is a geodesic on the ball; we just saw that the geodesics
on the ball are those of the form t 7→ tβ. Moreover, φ is an isometry of of the
Bergman metric, so if t1α is further from the origin than t2α then φ(t1α) is also
further from the origin than φ(t2α). So, the limit does in fact exist, and also
must lie on ∂B.

One implication of this step is that points in ∂D2 map to points in ∂B. Let
us compose φ with a rotation of the ball so that φ′(0, 1) = (0, 1). We may as
well call this new function φ.

Now, take f : B → C be defined by f(z, w) = (z+ 1)/2. f must be holomor-
phic on B, but it is also holomorphic on a neighborhood of B. Also, note that
|f | ≤ 1 on B, with equality in B only attained at (1, 0).

Now, we take 0 < r < 1 and consider the integral

1
2π

∫ 2π

0

f(φ(r, reiθ))dθ

As we concluded earlier, each of the curves r 7→ (r, reiθ) is a geodesic in D2,
and so r 7→ φ(r, reiθ) is a distinct geodesic in B for each distinct θ. Then as
r → 1, f(φ(r, reiθ)) → f(φ(1, eiθ)). Because of this pointwise convergence and
f is bounded, we take the limit as r → 1 and pass the limit inside the integral
due to the Dominated Convergence Theorem and obtain

lim
r→1−

1
2π

∫ 2π

0

f(φ(r, reiθ))dθ =
1

2π

∫ 2π

0

f(φ(1, eiθ))dθ

Its modulus must be less than 1, because |f(φ(1, eiθ))| < 1 for θ 6= 0.
However, we can calculate this integral explicitly. Let (φ1, φ2) = φ(z, w).

See that f(φ(r, reiθ)) = (φ1(r, reiθ) + 1)/2.
So,

1
2π

∫ 2π

0

f(φ(r, reiθ))dθ =
1

2π

∫ 2π

0

φ1(r, reiθ) + 1
2

dθ

=
1

2π

∫ 2π

0

u1(r, reiθ) + v1(r, reiθ) + 1
2

dθ

Where u1 and v1 are the real and imaginary parts of φ1, respectively. Since
they are both harmonic in each of the arguments, the mean value property of
harmonic functions tells us that this integrates to

u1(r, 0) + v1(r, 0) + 1
2

= f(φ(r, 0))

Taking the limit as r → 1 tells us that this integral should evaluate to
f(φ(1, 0)) = 1. We just concluded, however, that the modulus of the integral
must be less than 1, so we have a contradiction.

The proof is easily generalized to n dimensions (just stick n everywhere
instead of 2). We now present another proof by [1] and a very slick proof by [8].
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4.3 A Proof by Bell

Proof. This proof is from [1, Theorem 2.1]. It is again by contradiction.
Suppose there exists f : P (0, 1)→ B(0, 1) that is biholomorphic. As before,

we can ensure that φ(0) = 0 by composing it with the appropriate Mobius
transformation.

Now, let u = det ∂fi∂zj
be the determinant of the Jacobian of f , and let

U = det ∂f
−1
i

∂zj
be the determinant of f−1. Now let φ ∈ L2(B(0, 1)), calculate its

norm and change variables:∫
B(0,1)

|φ(w)|2dV (w) =
∫
P (0,1)

|u(z)|2|φ(f(z))|2dV (z) (1)

If the integral on the left is finite, the integral on the right is as well and so
φ ∈ L2(B(0, 1)) implies u · φ(f(z)) ∈ L2(P (0, 1)). Note that these integrals
could have been written as inner products on L2(Ω).

The next step requires some measure theory which we have not gone over.
Suffice to say that Bell [1, Eq. (2.1)] (quickly) shows that for φ and ψ in L2

with “compact support”,

〈u · (φ ◦ f), ψ〉P (0,1) = 〈φ,U · (ψ ◦ f−1)〉B(0,1)

Now we come to the main part of the proof: we would like to show that f
must be linear. Plugging in φ = 1, ψ = zα into (1), we have

〈u, zα〉P (0,1) = 〈1, U(f−1)α〉B(0,1)

= c0U(0)(f−1(0))α

The last step is by Lemma 3.4. But since f(0) = 0 by assumption, for |α > 0|,
〈u, zα〉P (0,1) = 0. Thus u projected against any nonconstant monomial is szero
and so in the Taylor expansion all the nonconstant terms must be zero. Since
f is biholomorphic, u can’t be zero, so it must be a nonzero constant.

We use [1, Eq. (2.1)] again, this time with φ = zi, ψ = zα:

〈ufi, zα〉P (0,1) = 〈zi, U(f−1)α〉B(0,1)

and again by Lemma 3.4,

= ci∂U(f−1)α/∂zi(0)

This is zero if |α| > 1. Thus ufi projected against any monomial zα, |α| > 1
must be zero, so its series expansion must be linear. Since we just concluded
that u is a nonzero constant, the expansion of f must be linear and so f is a
linear transformation.

However, invertible linear transformations of B map it to ellipsoids. Thus
a biholomorphism between B and P (0, 1) would seem to imply that the unit
polydisc is an ellipsoid, which it is clearly not for n > 1.
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4.4 A Proof by Rudin

There is yet another way of doing this proof - which is very slick - but it will
require the introduction of a couple more (easy) theorems.

Definition 4.1. Define the kth iterate of f to be f composed with itself k times
as follows:

fk(z) = f◦ k· · · ◦f(z)

Lemma 4.3. Suppose f : Ω → Ω satisfies f(0) = 0 is holomorphic function
whose power series expansion is convergent in some ball centered at the origin.
Suppose further that f(z) has the homogeneous expansion

f(z) = z +
∞∑
i=j

Fi(z)

(Note that j not necessarily equal to 2).
Then, fk(z) has the homogeneous expansion

fk(z) = z + kFj(z) +O(zj+1)

where O(zj+1) is a (haphazard) way to denote the error which contains terms
of the form zα, |α| ≥ j+1. Because of the uniform convergence of the series we
could move the terms around and write it equivalently as O(zj+1 =

∑∞
j+1Gi(z);

note that the Gi’s are not necessarily the same as the Fi’s.

Proof. The proof is by induction on k. The base case is clearly true from the
way we have set things up. Now suppose it is true for some k. We want to
calculate the homogeneous expansion of fk+1.

Now,

fk+1(z) = fk(f(z)) = f(z) + kFj(f(z)) +
∞∑

i=j+1

Fi(z)

= f(z) + k
∑
|α|=j

cαf(z)α +O(zj+1)

Note that Cauchy’s inequalities [4, Theorem 2.2.7] guarantee us that this error
decays faster in modulus than C/(j + 1)!, where C may depend on f and z.

Now let us examine this sum. We can expand f(z) around 0 and each of the
sums will have good enough convergence properties for our purposes. Explicitly,

k
∑
|α|=j

cαf(z)α

= k
∑
|α|=j

cα

z +
∑
|β|≥j

cβz
β

α
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We are interested in the terms with order |α| = j. In fact, if we look at the
partial sums z +

∑
j≤|β|≤m

cβ(z)zβ

α

it is clear that only the lowest order terms in the expansion of this polynomial
are of order |α| = j, so we rewrite this sum as

zα +Om(zj+1)

where Om(zj+1) may depend on m.
However, we can make an estimate on our sum; to be really explicit,∣∣∣∣∣∣

z +
∑

j≤|β|≤m

cβ(z)zβ

α∣∣∣∣∣∣ =

∣∣∣∣∣∣z +
∑

j≤|β|≤m

cβ(z)zβ

∣∣∣∣∣∣
j

≤

|z|+
∣∣∣∣∣∣
∑
|β|≥j

cβ(z)zβ

∣∣∣∣∣∣
j

≤
(
|z|+ C

(j + 1)!

)j
where the last inequality is by the estimate on the remainder provided us by
Cauchy’s estimate. Note that it is not dependent on m. In fact, even when we
take the limit as m→∞, we are guaranteed

lim
m→∞

|zα +Om(zj+1)| = |zα +O(zj+1)| ≤
(
|z|+ C

(j + 1)!

)j
This estimate, combined with [2, Theorem 2.77] guarantees us that this is

the Taylor expansion of f(z)α when z is real. By the identity theorem for
holomorphic functions this then implies that this is the correct power series
expansion of f(z)α when on the neighborhood we are looking at. This provides
the motivation for rearranging the expansion of f(z)α as

zα +O(zj+1)

Now we can expand and rearrange the terms in the original expansion of
fk+1 as follows:

fk+1 = f(z) + k
∑
|α|=j

cαf(z)α +O(zj+1)

z +
∑
|α|=j

cαz
α +O(zj+1) +

k ∑
|α|=j

cαz
α +O(zj+1)

+O(zj+1)

= z + (k + 1)Fj(z) +O(zj+1)
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where in the last step we have used
∑
|α|=j cαz

α = Fj(z). It is legal for us to
stick all these error terms together, as our estimates on the errors along with [2,
Theorem 2.77] again guarantee us that they die quickly enough and that this
is an expansion of fk+1(z) for z real. Again by the identity theorem we can
conclude that this is the correct expansion of fk+1 and we are done.

Theorem 4.4 (Cartan’s Uniqueness Theorem [8, Theorem 2.1.1]). Suppose that
Ω ⊂ Cn is a bounded connected open set, f : Ω → Ω is holomorphic, and there
is a ζ ∈ Ω such that f(ζ) = ζ and f ′(ζ) = I, where I is the identity. Then
f(z) = z for z ∈ Ω.

Proof. Without loss of generality, suppose ζ = 0 (and naturally that 0 ∈ Ω).
Since Ω is open and connected, there is an r1 such that z ∈ Cn, |z| < r1 ⇒ z ∈ Ω,
and since it is bounded there is an r2 such that |z| > r2 ⇒/∈ Ω.

Since f is holomorphic, it has a power series expansion which is convergent
inside some radius of convergence; set r1 so that it is smaller than the radius of
convergence (if it isn’t already). Thus, f can be expanded homogeneously as

f(z) = z +
∞∑
i=2

Fi(z)

Now we prove by induction on m that Fm(z) = 0. Assume that Fi(z) = 0
for 2 ≤ i ≤ m− 1. The base case m = 2 is trivially true. Now by our lemma we
just proved, fk(z) has the homogeneous expansion

fk(z) = z + kFm(z) +
∞∑

j=m+1

cjFj(z)

Now fix a z so that |z| < r1; by 2.4 we have

1
2π

∫ 2π

0

fk(zeiθ)e−imθdθ = kFm(z)

Now because fk maps into Ω and thus |fk(z)| < r2 we can place an estimate
on the integral on the left:∣∣∣∣ 1

2π

∫ 2π

0

fk(zeiθ)e−imθdθ
∣∣∣∣ ≤ 1

2π

∫ 2π

0

|fk(zeiθ)||e−imθ|dθ ≤ r2

Thus, |Fm(z)| < r2/k; since this holds for all k and for any |z| < r1, we
conclude that Fm(z) = 0 and thus f(z) = z for all |z| < r1. Since Ω is connected,
the identity theorem for holomorphic functions implies that f(z) = z for all
z ∈ Ω.

Theorem 4.5 ([8, Theorem 2.1.3]). Suppose Ω1 and Ω2 are circular regions in
Cn which both contain the origin, Ω1 is bounded, and f : Ω1 → Ω2 is biholomor-
phic and fixes the origin. Then, f is a linear transformation.
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Proof. Let g = f−1, A = f ′(0). By the chain rule, g(f(0))′ = g′(0)f ′(0) =
Ag′(0). Since g(f(z)) = z, Ag′(0) = I so g′(0) = A−1.

Now fix a real θ and let h : Ω1 → Ω1 be defined as h(z) = g(e−iθf(eiθz)).
Since Ω1 and Ω2 are both circular, h is defined for all z ∈ Ω1 and since it is the
composition of products of holomorphic functions it is also holomorphic.

Since h(0) = g(f(0)) = 0 and h′(0) = g′(0)f ′(0) = I, it satisfies the condi-
tions of the Cauchy Uniqueness Theorem, and so h(z) = z. Now,

eiθf(z) = eiθf(g(e−iθf(eiθz))) = f(eiθz)

This holds for every z ∈ Ω1, θ ∈ R. Then in the power series expan-
sion, we require that eiθcαzα = cαz

αei|α|θ (in multi-index notation, (eiθ)α =
eiα1θeiα2θ · · · eiαnθ = ei(α1+···+αn)θ = ei|α|θ). Clearly then cα must be zero for
all |α| > 1 and f must be linear.

Theorem 4.6. Suppose Ω ⊂ Cn is a circular region which contains the origin,
and there is a biholomorphism f which takes it to B. Then there is a linear
transformation of Cn which maps B onto Ω

Proof. Set α = f−1(0), g(z) = f(φα(z)) Then g(0) = 0 and g is a biholomorphic
from B to Ω. By the Cauchy Uniqueness Theorem g is linear.

Now we can disprove the Riemann mapping theorem again.

Rudin’s proof. From [8, Corollary, p.27]. A biholomorphic map between the ball
and the polydisc would be linear as we just proved. As we noted before, a linear
transformation cannot map the ball to the polydisc.

4.5 Dessert

While the Riemann mapping theorem itself does not hold in n dimensions, a
weaker theorem is true.

Theorem 4.7 (Almost Riemann n-Mapping Theorem [1, Theorem 6.1]). Every
bounded domain Ω in Cn which has a transitive automorphism group and a C2

boundary is biholomorphic to the unit n-ball

To have a transitive automorphism group means that, for any two points
z, w ∈ Ω, there exists an automorphism f : Ω→ Ω such that f(z) = w.

Proof. It’s all French to me. See [7].

Remark Polydiscs do not have transitive automorphism groups.
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5 Conclusion

Sadly, there was neither time nor space to give a full and detailed exposition
of the basic results in multvariable complex analysis. However, there are many
interesting results which seem to bring together complex analysis and geometry;
[5] is one example which goes over such results. We hope to have presented a
compelling exposition of this interesting result, and that we have sparked the
reader’s interest.
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