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1 Introduction

Investors purchase stocks and bonds in the financial market, putting their funds at risk for the opportunity
to earn a return. Since the time of Phoenicians, they have sought to minimize this risk value for each
level of expected return. In order to do so, a whole range financial instruments have been developed,
known as derivatives, assets who derive assets from another financial asset.

The nature of derivative assets provides an interesting conduit for the analysis and application of Brown-
ian motion and solving partial derivative equations, while maintaining its real world applications. Numer-
ous articles have been written on modeling movements in financial markets with stochastic calculus. Per-
haps the most famous of these described the Nobel Prize winning Black-Scholes option pricing model[2].
In several articles, mathematicians, specifically Robert Almgren’s[l] and Anastasios Malliaris[5], have
attempted to more rigorously bridge the gap between random motion and option pricing.

2 Terminology

2.1 Financial
e Asset: An object that provides a claim to future cash flows.
e Efficient Market Hypothesis: There is no opportunity for arbitrage in the market
e Derivative: A financial asset that derives its value from another asset.

e Option: A derivative that provides the opportunity, but not obligation to buy or sell an asset at a
predetermined price in the future.

e Strike Price: The predetermined price for executing an option. For a call option, if the market
price rises above the strike price, the investor will be willing to buy. For a put option, if the market
price falls below the strike price, the investor will want to sell the underlying asset.

2.2 Stochastics
e Probability Space: A construct of three components, (2, F, P), where

1. Q is the set of all possible outcomes.
2. F is the set of all events, where each event has zero or more outcomes.
3. P is the assignment of probabilities to each event
e With Probability 1: Also known as almost surely. The probability of an event occuring tends to

1 given some limit. Note that this differs from surely in that surely indicates that no other event
is possible, while almost surely indicates that other events become less and less likely.

e A collection of sets F is called a o-algebra if for a sequence of sets Ay € F, [J7° Ay € F and is
closed under complementation. The sets A € F are F-measurable.

e M0, T denotes the set of functions f(¢) such that f(t) is defined on [0, T'], measurable with respect
to the o-algebra F; for all ¢, and fOT |f(t)|?dt is finite with probability 1.



3 Mathematical Stochastics

3.1 Brownian Motion

The realm of financial asset pricing borrows heavily from the field of stochastic calculus. The price of a
stock tends to follow a Brownian motion.

Definition A stochastic process w(t) is said to follow a Brownian motion on [0,7] if it satisfies the
following:

1. w(0) = 0.
2. w(t) is almost surely continuous.

3. For arbitrary tq, ta, ..., tn, where 0 < t; < to < ... < t, < T, the variables w(0), w(t;)—w(0), w(ty)—
w(ty), ..., w(t,) —w(t,—1) are mutually independent. In other words, it is a process with indepen-
dent increments.

4. The mean (or expected) value, Ew(¢) is 0.

5. The process w(t) takes on a normal distribution density around its mean. More specifcally,
E[w(tkH) — w(tk)]2 = tk+1 — tk.

3.2 The Ito Integral and the Ito Differential

A natural response to a Brownian motion w(t) is the desire to integrate with respect to it. Thus, for a
function/process f over a probability space w, we seek to make sense of a stochastic integral

[ s
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Note that with a differential function g(t), we can evaluate the Riemann Stieljes integral of / f(t)dg(t)
0

n—1
by using HILH;O Z F(t)gt,41 —gt;]. Where t* is a point on the interval [t;,;1), and the series converges
7=0

to the same limit regardless of our selection of ¢*. With Brownian motion, because of the independent
increment quality, w(t) is nowhere differentiable, and as such, we cannot evaluate the Riemann Stieljes
integral (the limit of the sum is dependent on our selection of ¢*). As a result, there are as many
stochastic integrals as there are selections of t*.

Definition The Ito integral, takes our selection of t* as the left endpoint, ¢;. We thus have

T n—1
/0 Ftaydu(t) = Tim 3 f(t) [y, —w,]
§=0

With a stochastic integral, it seems only suitible to have a stochastic differential. It is defined as follows.
Definition Suppose there exist two functions u(t) and v(¢) in M0, T'] such that for all 0 <t¢; <t; < T,
ty ty
X(ty)— X)) = / u(t)dt +/ v(t)dw(t)
t t;

Then the Ito differential of a process X (t) is defined to be

dX (t) = u(t)dt + v(t)dw(t)



3.3 Ito’s Lemma

Stochastic calculus contains an analogue to the chain rule in ordinary calculus. If a process follows
geometric Brownian motion, we can apply Ito’s Lemma, which states[4]:

Theorem 3.1 Suppose that the process X (t) has a stochastic differential dX (t) = u(t)dt +v(t)dw(t) and
that the function f(t,x) is nonrandom and defined for allt and x. Additionally, suppose f is continuous
and has continuous derivatives fi(t,x), fo(t, ), fzz(t,x). Then the stochastic process Y (t) = f(t, X (t))
also has a stochastic differential, and

dY (t) = {ft(uX(t)) + folt, X (2))u(t) + %fzz(t7X(t))U2(t) dt + fo(t, X (t))v(t)dw(t)

or in integral form,

Vi)=Y = [l X0)+ Ll X000+ U e x (00

+ [ R X)) du)

ti
This proof is borrowed largely from Gikhman and Skorokhod[3].

Proof First, let us assume that u(t) and v(¢) are independent of t. Let ¢; =ty < t1 < ... < t, = ty.
Then

Y(ty) =Y (i) = f(ty, X(tr)) — f(ti, X (8:))

n—

[f (trrrs X (Ers1)) — f(tr, X(tr))]
k=0

However, note that the Taylor expansion of the summand is
fltrgr, X(trgr)) = f e, X (8) = feltr, X (k) (Chgr — ) + fa(tr, X () [X(Erg1) — X (E)]
g Frelti X(00)) [X () — X ()7 + O(1X, £, X%)
The O(tX,t?, X3) will become insignificant with probability 1 as max(t;41 — tx) — 0, by reasoning
similar to that in Lemma A.1. As it turns out, we will show that the [X (t;41) — X (t)]? term retains an

O(t) term, so we keep it for now.
Because X (tg4+1) — X (tr) = w(t)(tg41 — tr) + v(t)(w(tg+1) — w(ty)), we can substitute to get

fQrr1, X (1)) — e, X (k) = frlte, X () (k1 — tr) + fo(te, X (t6))u(te) (trr1 — tr)
ol X D0 0 (tr) = w(t)] + 2 10, X (1) (b — 10)?
+u(t)v(t) fow (i, X (tr)) (pr1 — tr) (w(tps1) — w(tn))

U(tk)2 . 2
5 foa(te, X (1)) (W(ter1) — w(tn))

+

As shown in Lemma A.1 (in the appendix), the terms that sum over the (tx41 — tx)? term and the
(tkt1 — ti)(w(tkr1) — w(tx)) term will tend to 0 with probability 1 as max(tx4+1 — tx) — 0.
If we now sum over the remaining terms, we have

n—1 n—1
Y -vt)= o D Felbrs X (E0)) (trer = te) + D Fulti, X (00))ulte) (trer — i)
A k=0 k=0

2 n—1

FY Falt X)) — w(t) + S f X (00 wlt11) — wlin))?
k=0 k=0



Recall that for a Brownian process, E[w(tg11)—w(tx)]? = txr1—tx. As we take the limit as ¢4 —t — 0,
we can thus replace the [w(tg11) — w(tx)]? term. Doing so and recognizing that the summations are by
definition the Ito integral, we are left with

Y(t,) = Y(t) = t_fft(t,X(t))dH t_ffm(t,X(t))u(t)dt
+ tvffgg(t,X(t))v(t)dw(t)_FU(’;’“)Z t,lf Fon (6, X (1))t

We have now shown Ito’s Lemma for constant u and v. It follows that for step functions, the same
applies, as they can be partitioned into finitely many constant functions over an interval. As shown in
Lemma A.2 (in the appendix), it is possible to choose a sequence of step functions u, and v, so that

/tf u(t) — un(t)|dt — 0

t;

tr
/ () — vn ()2t — 0
ti

and X, (t) = X (t;) + fti ands + fti bndw(s) converges uniformly to X (¢) with probability 1.

As f is continuously smooth, we can also say that Y;,(t) = f(¢, X,,(t)) — Y (¢) uniformly with probability
1.

As Y, (¢) is piecewise constant, we can say

V)= V() = [ [ A0 Xal0) + S X 0)n(0) + 3 foalt, X (0)02(0)]

[t X))o (B)dut)

t;

As we let n — 0o, we obtain Ito’s Lemma in integral form,

V=¥ = [ [A6X0)+ Bt XOW0 + st X000 a
+ ' fa(t, X (8))v(t)dw(t)

ti

The differential form of this is the theorem we set out to prove.

dY (t) = {ft(t,X(t)) + folt, X ())u(t) + %fzz(t,X(t))Ug(t) dt + fo(t, X (t))v(t)dw(t)

4 Financial Applications

4.1 Black-Scholes Equation

This brings us to the Black-Scholes equation for option pricing.

Consider a single stock, with price S(t), which varies with time. Almgren argues that the value of the
option deriving from that stock should have a market value that is a function of S and ¢. Let us call this
D(t) = V(t,S(t)).

In the world of finance, the most significant descriptor of the profitability of an asset is its rate of return.
In order to describe the pertrubations of the return on a share of stock, we will model it a geometric
Brownian motion.



Definition A process takes on geometric (also known as exponential) Brownian motion if its logarithm
follows a Brownian motion. In other words, only fractional changes take place as random variation. Its
differential takes on the form

dS = aS(t)dt + bS(t)dw(t)

where a and b are constants, and w(t) is a Brownian motion.

Let the stock price take on a geometric Brownian motion, where the change in stock price is proportional
to the current stock price, that is dS = aS(t)dt + bS(t)dw(t). Note that by Ito’s lemma,

2 Q2

2

2 Q2

2

dD = |V; +aSVg + b VSSj| dt + bSVsdw(t) = |:Vt + VSS] dt + VsdS

Consider an investor who holds a portfolio of the stock and its option, P(t) = Ny (t)S(t) + N2(t)D(t).
The differential is

2 Q2

2

b
dP = N1dS + NodD = N1dS + No |:Vt + Vss] dt + NoVsdS

Malliaris[5] then makes the clever argument of holding a ratio of stock to derivative of %—; = —Vs (this
is known as a delta hedge), so that N1dS + NyVgdS = 0. We are left with

b2S5?
dP = Ny {Vt + 2V55] dt
which is completely independent of Brownian motion (there is no dw(t) term, explicit or implicit). As a
result it can be considered “riskless”. By the efficient market hypothesis, the return on this riskless asset

must be equal to that on any other riskless asset, more specifically a government bond. Let the return
on the government bond be 7(t). Then we have

ap N [Vit EE V| at

= = rdt
P NiS + N "
If we rearrange and normalize so that Ny = 1, thus making Ny = —Vg, we get
b252
Vi + 5 Vsg)dt = (—=VsS + V)rdt
or
b2 2
Vi(t,S) + 5 Vss(t,S) + SVs(t,S) —rV(t,S) =0

Which is the Black-Scholes differential equation for option pricing.

5 Conclusion

Almgren and Malliaris both serve to elucidate the connection between stochastic processes and financial
asset valuation and deepen the insight provided originally by Black and Scholes. The crux of the argument
lies with Ito’s lemma, which allows one to value an asset whose value is a random Brownian function of
another asset. While Ito’s original formula was developed for more scientific fields, it has found a niche
in financial analysis.

In their original thesis, Black and Scholes further solve their differntial equation with condition that
V(t,S =0) =0, and F(T,S) = max[0,S — E], where T is the exercise date for the option, and FE is
the excercise date indicated in the contract. As a result of the Black Scholes equation, the application
of stochastics to finance has been reinvigorated and today it has been applied to a plethora of financial
assets.



A Appendix

Lemma A.1 As max(tgy1 —tg) — 0,

1
1. (tk+1 — tk)z — 0

3
|

b
Il
o

i
)

2. (tkt1 — te)(w(tps1) —w(te)) = 0

b
I
o

Proof

1. Without loss of generality, let (tz41 — tx) be the largest partition of the space [t;,t¢]. Since we are
partitioning into n segments, the average partition will have size % Let our largest partition
have size ctf;t". Then

n—1 n—1 te—ts 2 tr—t 2
E (tper —tr)? < E (Cfl> <n (sz> =0
n

n
k=0 k=0

as max(tr+1 — tg) — 0, or equivalently as n — oo.

2. Similar to the previous example, note that

n—1

D (trgr = ) (Wltisr) — w(ty)) < ety — ta) (w(tkrr) — w(ty))
k=0

As a Brownian process is almost surely continuous, ¢(t; —t;)(w(ty+1) —w(tx)) — 0 with probability
1.

Lemma A.2 If f(t) is in M[0,T], then there exists a sequence of step functions f,(t) in M[0,T] such

that with probability 1,
T

im [ |f(t) = fu(t)Pdt =0

n—oo 0

Proof Let us first consider a bounded function g(t). As it is bounded, at each point ¢, there is a sequence
gn(t) to the value of g(t) with probability 1.

An arbitrary function in MJ[0,T] can be approximated by a bounded function to an arbitrary degree of
accuracy. Thus, the sequence of step functions can also be approximated and are dense in the set of all
functions.
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