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1 Introduction

One of the most important and widely studied special functions in mathematics
is the gamma function

Γ(z) =
∫ ∞

0

tz−1e−t dt, Re z > 0,

Figure 1: A domain-colored plot of Γ(z), rendered with Sage

along with its meromorphic extension to the entire complex plane. However,
in studying the gamma function, it is sometimes useful to consider its recip-
rocal. Like the gamma function itself, there are numerous definitions for this
mathematical object. One common form is:

1
Γ(z)

= zeγz
∞∏
k=1

(
1 +

z

k

)
e−z/k, z ∈ C,

where γ ≈ .5772 denotes the Euler-Mascheroni constant. For the derivation, see
[3] p. 363. But occasionally more useful is Pierre-Simon Laplace’s 1812 integral
formula

1
2π

∫ ∞
−∞

ea+it

(a+ it)z
dt =

1
Γ(z)

.

In [7], Wladimir de Azevedo Pribitkin explores Laplace’s integral and applies
it to the proofs of several properties of the gamma function. This paper will
highlight some of the major results of Pribitkin’s exposition, culminating in the
derivations of the Maass and Lipschitz summation formulas.

2 Laplace’s Integral

We will begin by defining Laplace’s Integral and recording a few of its essential
properties.
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Definition 2.1. We define Laplace’s Integral as

La(z) =
1

2π

∫ ∞
−∞

ea+it

(a+ it)z
dt,

where a, Re z > 0.

We will use the convention zα = eα log z where we take the principal branch
of the logarithm, with −π ≤ arg z < π. Almost immediately clear from the
definition is that La(z) converges absolutely and uniformly for Re z ≥ 1 + ε and
Im z ≤ C for any C. Let z = x+ iy. We estimate the integrand:

∣∣∣∣ ea+it

(a+ it)z

∣∣∣∣ = |exp(a+ it− z log(a+ it))|

= |exp(a− x log |a+ it|+ y arg(a+ it))|
≤ ea+πC |a+ it|−x.

For t ∈ [−a, a], the integrand is bounded from above by 2ea+πC |a|−x, and is
hence proper. Elsewhere, it is bounded by 2ea+πC |t|−x. Since

∫ a
−∞ |t|

−x and∫∞
a
|t|−x converge, La(z) converges absolutely and uniformly by the Weierstrass

M-Test. Since C was arbitary, we have absolute and uniform convergence for
all compact subsets of x > 1. We leave it to the reader to show that La(z) also
converges uniformly on compact subsets of x > 0, and hence defines an analytic
function on this half-plane.

Next we will demonstrate the functional equation

La(z) = zLa(z + 1). (1)

As in the proof of the analogous property for the gamma function, we will
integrate by parts:

La(z) =
1

2π

∫ ∞
−∞

ea+it

(a+ it)z
dt

=
1

2π

(
ea+it

(a+ it)z+1

∣∣∣∣∞
−∞
−
∫ ∞
−∞

−zea+it

(a+ it)z+1

)
= zLa(z + 1).

We can use this recurrence relation to perform an analytic continuation (See
[3], pp. 158 - 162) of La(z) to arbitrary z. As a result, we see that La(z) can
be extended to be an entire function.

Thirdly, we will show that La(z) is in fact independent of a. We accomplish
this by formally differentiating with respect to a:
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1
2π

∫ ∞
−∞

∂

∂a

ea+it

(a+ it)z
dt =

1
2π

∫ ∞
−∞

(a+ it)zea+it − ea+itz(a+ it)z−1

(a+ it)2z
dt

=
1

2π

∫ ∞
−∞

ea+it

(a+ it)z
+

zea+it

(a+ it)z+1
dt

= La(z)− zLa(z + 1).

Since these integrals converge uniformly, and by (1) their difference is zero,
we find that La(z) = L(z) is independent of our choice of positive a. For
convenience in calculations, we will generally choose a = 1 in the remainder of
this paper.

Figure 2: L(z), rendered with Sage

Finally, we demonstrate the connection between L(z) and the factorial func-
tion. To do so, we evaluate L1(2) via contour integration. Let CR be the
semicircular contour in the upper half-plane with radius R > 1. Then by the
Residue Theorem, we have:

∫ R

−R

e1+it

(1 + it)2
dt+

∫
CR

e1+iζ

(1 + iζ)2
dζ = 2πi Res

[
e1+iζ

(1 + iζ)2
, i

]
= 2πi lim

ζ→i

d

dζ

(
(ζ − i)2 e1+iζ

(1 + iζ)2

)
= 2π.

By the ML-estimate, we have:∣∣∣∣∫
CR

e1+iζ

(1 + iζ)2
dζ

∣∣∣∣ ≤ e

R2 − 1
· πR,
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which tends to 0 as R → ∞. Since the integral defining L(2) converges abso-
lutely, we thus have L(2) = 1. By induction on our functional equation (1), we
have:

L(n) =
1

(n− 1)!
(2)

for all n ∈ Z+. Our recurrence relation shows that we have simple zeroes at
each nonpositive integer.

3 Laplace’s Identity

The objective of this section is to prove the identity

Γ(z)L(z) = 1, (3)

for all z ∈ C, taking limits as appropriate for the nonpositive integers.

3.1 A Few Estimates

An easy result from complex power series is Liouville’s Theorem, which states
that a bounded entire function is constant. With a little more work, we can
prove the following extension.

Theorem 3.1 (Extended Liouville Theorem). Let P (z) be a polynomial of de-
gree n. Suppose f(z) is an entire function and |f(z)| ≤ P (|z|) for |z| > ρ. Then
f is a polynomial of degree at most n.

Proof. Suppose P (|z|) = an|z|n + an−1|z|n−1 + · · · + a1|z| + a0. Choose R >
max{1, ρ}. Then:

|P (|z|)| ≤ |z|n
n∑
1

|aj | ≤ Rn
n∑
1

|aj |.

Hence, by the Cauchy estimates, we have

|f (m)(0)| ≤ m!
Rm

Rn
n∑
1

|aj |.

Suppose m > n. Then |f (m)(0)| → 0 as R → ∞, so f (m)(0) = 0 for all m > n.
Hence, the power series expansion of f(z) centered at the origin consists only
of terms with degree less than or equal to n, so f(z) is a polynomial of at most
degree n.

Example 1. Suppose f(z) is an entire function that satisfies |f(z)| ≤ |z|4/ log |z|
for |z| > 1. For |z| > 1, we have log |z| ≤ |z|, so |f(z)| ≤ |z|3. Then by the
extended Liouville theorem, f(z) is a polynomial of at most degree 3.
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A popular and somewhat surprising result characterizing the gamma func-
tion is the Bohr-Mollerup Theorem. The theorem states that a continuous func-
tion F : R → R satisfying F (1) = 1, the functional relation F (x + 1) = xF (x)
and the condition of log convexity is the gamma function. In 1939, Helmut
Wielandt discovered a similar result for the gamma function in the complex
plane. The following theorem is taken from [5].

Theorem 3.2 (Wielandt’s Theorem). Let F (z) be an analytic function in the
right half-plane A = {z ∈ C : Re z > 0} having the following properties:

(a) F (z + 1) = zF (z) for all z ∈ A
(b) F (z) is bounded in the strip S = {z ∈ C : 1 ≤ Re z < 2}
(c) F (1) = 1.

Then F (z) = Γ(z).

Proof. Let f = F −Γ, which is analytic in A. Note that since f(1) = 0, we have
f(z) = (z − 1)g(z) for g(z) analytic at 1. From (a) and the recurrence relation
for the gamma function, we can extend f to be analytic at 0:

f(0) ≡ lim
z→0

((z + 1)− 1)f(z + 1)g(z + 1)
z

= g(1).

Therefore, by our recurrence formula, we can extend f to the entire function f̂ .
Since |Γ(z)| ≤ |Γ(Re z)|, we have that Γ is bounded on S and hence f is bounded
by (b). Let S0 = {z ∈ C : 0 ≤ Re z < 1}. For all z ∈ S0 with |Im z| ≤ 1, it is
clear that f is bounded. For points with |Im z| > 1, the boundedness of f on
S0 follows from f(z) = f(z + 1)/z and the boundedness of f on S.

Consider the entire function s(z) = f̂(z)f̂(1 − z). Since f(z) and f(1 −
z) take on the same values in S0, the function s(z) is bounded in S0. Since
f̂(z + 1) = zf̂(z) and f̂(−z) = −f̂(1 − z)/z, it follows that s(z + 1) = −s(z).
Hence s(z) is bounded on C and therfore constant by Liouville’s theorem. Since
s(z) ≡ s(1) = f(1)f̂(0) = 0, we have f̂(z) ≡ 0 so F (z) = Γ(z) on A.

Example 2. Let

F (z) = π−1/22z−1Γ
(z

2

)
Γ
(
z + 1

2

)
.

Since the gamma function is analytic in the right half-plane, F is also analytic
here. We also have

F (z + 1) = 2π−1/22z−1Γ
(
z + 1

2

)
Γ
(
z + 2

2

)
= π−1/22z−1Γ

(
z + 1

2

)
zΓ
(z

2

)
= zF (z).
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Since
|tz−1| = tRe z−1

we have that |Γ(z)| ≤ |Γ(Re z)| in the right half-plane. Hence, Γ(z) is bounded
on vertical strips {z ∈ C : a ≤ Re z ≤ b} for 0 < a < b. In addition, we have that
2z−1 is bounded on vertical strips, so F (z) is bounded on {z ∈ C : 1 ≤ Re z < 2}.
Finally, it is easy to show directly that F (1) = 1. Therefore, by Wielandt’s
Theorem, F (z) = Γ(z). By a simple change of variables, we have the Legendre
Duplication Formula

Γ(2z) = π−1/222z−1Γ(z)Γ
(
z +

1
2

)
.

3.2 The Reflection Formula

In this section, we will prove an analog of the Euler reflection formula for
Laplace’s Integral. We will use this formula to prove Laplace’s Identiy, and
as a corollary, give an easy proof of the reflection formula for the gamma func-
tion.

Theorem 3.3.
L(z)L(1− z) =

sinπz
π

.

Proof. Let Q(z) = πL(z)L(1 − z)/ sinπz. Since the simple zeroes of sinπz
coincide with those of L(z), we see that Q(z) is an entire function. Further,
from our functional equation (1), we have Q(z) = Q(z + 1). Let z = x + iy.
Then for x ≥ 2 and y 6= 0 we have

|L(z)| ≤ e

2π

∫ ∞
−∞

ey arg(1+it)

|1 + it|x
dt

≤
∫ ∞
−∞

ey arctan t

1 + t2
dt

=
∫ π/2

−π/2
eyt dt =

1
y

(eπy/2 − e−πy/2).

Furthermore, for all x and for all y 6= 0∣∣∣∣ 1
sinπz

∣∣∣∣ =
∣∣∣∣ 2i
eiz − e−iz

∣∣∣∣
≤ 2
eπ|y| − e−π|y|

.
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By repeated applications of (1), on the strip 2 ≤ x ≤ 3 we have

Q(z) = (1− z)(2− z)(3− z)(4− z)L(5− z)L(z)
π

sinπz
= O(y4)O(|y|−1eπ|y|/2)2O(e−π|y|)

= O(y2),

independent of x in this strip. Hence, there are positive constants A and B
such that |Q(z)| ≤ A|z|2 + B on the strip. By our recurrence relation Q(z) =
Q(z + 1), this estimate holds on C. By the extended Liouville theorem, Q(z)
is a polynomial of at most degree 2. However, since Q(1) = Q(2) = Q(3), the
polynomial Q(z)−Q(1) has at least three zeroes. By the fundamental theorem
of algebra, Q(z) must be constant. Since Q(z) ≡ limz→0

πz
sinπz = 1, we have the

desired reflection formula.

3.3 A Simple Proof of the Identity

In [7], Pribitkin formally gives two rather different proofs of Laplace’s Identity
(3). Relegated to his closing remarks is an outline of the following proof. With
the reflection formula and Wielandt’s Theorem in hand, we can fill in the details.

Let F (z) = 1/L(z) = πL(1−z)/ sinπz from the reflection formula, and as usual
let z = x + iy. We note that where sinπz has simple zeroes, L(1 − z) does as
well. Hence, the singularities of F are removable, so F is analytic for x > 0.
Furthermore, we have

F (z + 1) =
πL(−z)

sin(πz + π)
=
−zπL(1− z)
− sinπz

= zF (z).

Finally, we show that F (z) is bounded in the strip 1 ≤ x < 2. Making use of
our estimates from Theorem 3.3, we have

|F (z)| =
∣∣∣∣π(1− z)(2− z)(3− z)L(4− z)

sinπz

∣∣∣∣
≤
∣∣∣∣2π(1− z)(2− z)(3− z)(eπy/2 − e−πy/2)

eπ|y| − e−π|y|

∣∣∣∣
= O(y2e−π|y|/2).

Since the polynomial factor is dominated by the exponential as |y| → ∞, we have
that F (z) is bounded in this strip. Finally, since F (1) = 1/L(1) = 1/L(2) = 1,
we can apply the result of Wielandt’s theorem to prove that F (z) = Γ(z).

Since Γ(z) has simple poles where L(z) has simple zeroes, it follows that Γ(z)L(z) ≡
1 on C, taking limits at the nonpositive integers.
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As promised, the following corollary is immediately clear from (3) and Theorem
3.3.

Corollary 3.4 (Euler’s Reflection Formula).

Γ(z)Γ(1− z) =
π

sinπz
.

4 Some Summation Formulas

Pribitkin’s primary application of Laplace’s integral is to the derivation of the
Maass and Lipschitz summation formulas. These formulas in turn have a wide
range of consequences, especially in the theory of modular forms. To illustrate
the power of this field, we present the following surprising result.

Theorem 4.1 (Radamacher’s Formula). A partition of a positive integer n is
an expression of n as the sum of smaller positive integers. Let p(n), called the
partition function, be the number of partitions of n (where order does not
matter). Then

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)
√
k
d

dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))√(
n− 1

24

)
 ,

where
Ak(n) =

∑
0≤m<k,gcd (m,k)=1

eπi(s(m,k)−2nm/k),

and
s(m, k) =

∑
n mod k

f(n/k)f(mn/k),

and finally

f(x) =

{
x− bxc − 1/2, if x ∈ R \ Z;
0, if x ∈ Z.

The summation formulas we will derive thus build a bridge between analysis
and number theory. For a further discussion, see [6].

4.1 Confluent Hypergeometric Functions

The coefficients of Maass’ Formula are most easily expressed in terms of the
confluent hypergeometric function of the second kind. Here, we present a few
of the basics.

Definition 4.2. We define the hypergeometric equation as

z(1− z)w′′ + (c− (a+ b+ 1)z)w′ − abw = 0

for a, b, c ∈ C.
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If we replace z with z/b, the equation has singularities at 0, b, and ∞. If we let
b→∞, then∞ becomes a confluence of two singularities. This gives rise to the
confluent hypergeometric equation.

Definition 4.3. The confluent hypergeometric equation is given by

zw′′ + (c− z)w′ − aw = 0

for a, c ∈ C.

The confluent hypergeometric functions are two linearly independent solutions
of the confluent hypergeometric equation around z = 0.

Definition 4.4. Suppose Re c > Re a > 0. Then define the confluent hyper-
geometric function of the first kind as

Φ(a, c, z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

(1− t)c−a−1ta−1ezt dt.

Example 3. Here is a quick frustruating example from elementary calculus.
For x ∈ R

erfx =
2√
π

∫ x

0

e−t
2
dt =

2x√
π

Φ(1/2, 3/2, x).

Definition 4.5. Suppose Re a > 0, c ∈ C,Re z > 0. Then the confluent
hypergeometric function of the second kind is

Ψ(a, c, z) =
1

Γ(a)

∫ ∞
0

(t+ 1)c−a−1ta−1e−zt dt.

Hypergeometric functions have diverse applications in physics and engineering,
particularly in the study of waves. For instance, the confluent hypergeometric
equation is related to the Bessel equation, which appears in the study of (coin-
cidentally) Laplace’s equation. Most importantly for this paper, we note that
Ψ has an entire analytic continuation. In particular, Ψ(0, b, z) = 1. For more
information see [1] and [2] .

4.2 Maass’ Formula

A function that makes numerous appearances in the theory of automorphic
forms is

f(z) =
∞∑

l=−∞

e−2πiλ(x+l)

(z + l)s(z̄ + l)w
,

for λ ∈ R and s, w, z = x+ iy ∈ C. To ensure absolute convergence, we suppose
y 6= 0 and Re(s+ w) > 1. Since f(z) is periodic with period 1, we can express
it as a Fourier series

10



f(z) =
∞∑

n=−∞
cn+λ(y, s, w)e2πinx, (4)

where

cn+λ(y, s, w) =
∫ 1

0

f(z)e−2πinx dx.

Since our definition is symmetric about the imaginary axis, we can take y > 0.
Evaluating the coefficients, and making use of the substitution u = x+ l:

cn+λ(y, s, w) =
∫ 1

0

∞∑
l=−∞

e−2πiλ(x+l)

(z + l)s(z̄ + l)w
e−2πinx dx

=
∞∑

l=−∞

∫ l+1

l

e−2πi(n+λ)u

(u+ yi)s(u− yi)w
du

= (−i)s−w
∫ ∞
−∞

e−2πi(n+λ)u

(y − iu)s(y + iu)w
du.

Suppose Re s > 0 and Rew > 1. Then from the definitions of the gamma
function and Laplace’s integral, and by Fubini’s theorem, we have

cn+λ(y, s, w) = (−i)s−w
∫ ∞
−∞

(
1

Γ(z)

∫ ∞
0

vs−1e−(y−iu)v dv

)
e−2πi(n+λ)u

(y + iu)w
du

=
(−i)s−w

Γ(s)

∫ ∞
0

vs−1e−yv
∫ ∞
−∞

ei[v−2π(n+λ)]u

(y + iu)w
du dv

=
2π(−i)s−w

Γ(s)Γ(w)
e2π(n+λ)y

∫ ∞
max{0,2π(n+λ)}

vs−1(v − 2π(n+ λ))w−1e−2yv dv.

Hence we have

c0(y, s, w) =
2π(−i)s−wΓ(s+ w − 1)

Γ(s)Γ(w)(2y)s+w−1
, (5)

and

cn+λ(y, s, w) = (2π)s+w(−i)s+w|n+ λ|s+w−1e−2π|n+λ|y

×

{
Ψ(w,s+w,4π(n+λ)y)

Γ(s) , if n+ λ > 0;
Ψ(s,s+w,−4π(n+λ)y)

Γ(w) , if n+ λ < 0.
(6)

Maass’ formula is the Fourier series (4) given by coefficients (5) and (6).
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4.3 Lipschitz’s Formula

Although Maass’ formula in its full generality has numerous important uses, we
can easily derive from it a relatively simple summation formula with interesting
consequences of its own. If we set w = 0 in Maass’s formula (which is legal,
since Ψ(0, c, z) = 1), then for y > 0 we obtain

∞∑
l=−∞

e−2πi(z+l)λ

(z + l)s
=

(−2πi)s

Γ(s)

∑
n+λ>0

(n+ λ)s−1e2πinz, (7)

for Re s > 1.

Example 4. Take s = 2 and λ = 0 in Lipschitz’s formula. We have on the
right-hand side

(−2πi)2

Γ(2)

∞∑
1

ne2πinz = −4π2
∞∑
0

d

dz

(
1

2πi
e2πinz

)
= 2πi · d

dz

(
1

1− e2πiz

)
since |e2πiz| < 1 for y > 0

= 2πi
2πie2πiz

(1− e2πiz)2

= −4π2

(
eπiz

1− e2πiz

)2

= −4π2

(
− 1

2i
sinπz

)2

=
π2

sin2 πz
.

As a result, we have the identity

π2

sin2 πz
=

∞∑
n=−∞

1
(z + n)2

.

5 Conclusion

Pribitkin’s examination emphasizes some of the truly powerful aspects of com-
plex analysis. Just as the gamma function has a way of cropping up in various
areas of mathematics, so too have we seen Laplace’s integral. While the infinite
product form for the reciprocal of the gamma function has its merits, Laplace’s
integral form has proven to be very convenient for making estimates. Further,
its applications to the theory of modular forms reinforces the connection be-
tween complex analysis and number theory, much in the spirit of the prime
number theorem. Although after two centuries, this result still has yet to catch
on as a mainstream mathematical tool, its elegance and versatility still make it
an exceptional piece of mathematics.
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