Math Article Review Symmetries of Fractal Tilings

Crista Moreno

June 3, 2009

Contents
1 Introduction

2 Fractals
2.1 Fractal Fundamentals
2.2 Lévy Dragon e e

3 Tiling
3.1 Square Tiling e

3.2 Triangle Tiling L e
3.3 Underlying Mathematics in Tiling

4 Julia Sets (Fractals and Complex Analysis)
5 Conclusion
References

Appendix A

13

13

13

14

1 Introduction

This review explores tiling of the plane using square and triangle fractiles discussed in Palagallo & Salcedo
(2008) [4].

2 Fractals

2.1 Fractal Fundamentals

The study of fractals is fairly new, introduced in the late 20*" century by Benoit Mandelbrot, a French

mathematician. He developed the idea of fractional dimension, and coined the term fractal. A fractal is
a complex geometric figure that continues to display self-similarity when viewed on all scales. One of the
fundamental characteristics of fractals is that the length of its boundary is infinite, but its area is finite.
Surprisingly enough, though the images we see seem strange and exotic, fractals are inherent in nature. In
the formation of clouds, mountain ranges, and even trees, fractals are all around us [5]. Let us commence
with the formal definition of a fractal as stated by Mandelbrot [3].

Definition 1. A fractal is a set for which the Hausdorff Besicovitch dimension (dimension of a fractal) D
strictly exceeds the topological dimension Dp. Where D is always an integer and every set with a noninteger
D is a fractal.

In order to understand the definiton of the topological dimension we must return to set theory. Where
the topology for a set X is a family .7 of open subsets belonging to X, such that the null set, X, and the
union of an arbitrary number of open sets, and the intersection of finitely many open sets, are open.

Example 1. Looking at Figure 1, note that both diagrams 5 and 6 are crossed out because they are not
topologies. In diagram 5 the union of the elements v and w is missing and in diagram 6 the intersection v
is not included.

8.. U..
Vo w v @
w

1 2
o e o e O o
Uu. V- w . V. - W

Figure 1: Topology

The set X with topology 7, is a topological space, denoted by (X,7) [2]. The topological space X
has a topological dimension Dy if, for every covering €, has a refinement %’ such that V z € X occurs in at
most Dp + 1 sets in ¢, and Dy is the smallest such integer.

Definition 2. A covering of a subset S is is a set of open sets C = {C1,Ca,...,Ch} € X whose union
CiuCuU---UC, D S.

Definition 3. A refinement of a covering € of S is another covering €’ of S such that each set B in €' is
contained in some set belonging to € .

Example 2. Figure 2 displays a refinement, from the union of blue colored sets to the union of green
colored sets, of the covering of the set in purple.

I_

=

L]

Figure 2: Refinement of a Covering

The word fractal is derived from the Latin word fractus, meaning broken, shattered, or having been broken.
This is appropriate because the meaning we wish to preseve is “irregular fragments” which very well suits
the origin of this word. To study fractals we need a way in order to compare them to each other, thus we
have the fractal dimension [1].

Definition 4. Let (X,d) be a complete metric space. Let A € 5€(X). Let A (€) denote the minimum
number of balls of radius € needed to cover A. If

D = 213% (Sup (W 1€ € (0,6)))

exists, then D is called the fractal dimension A.

Definition 5. Let (X,d) be a complete metric space. The 7 (X) denotes the space whose points are the
compact subsets of X, other than the null set.

Definition 6. A metric space (X,d) is complete if every Cauchy sequence {x,}52 1 in X has a limit x € X.

Definition 7. A metric space (X,d) is a space X together with a real valued function d : X © X — R, which
measures the distance between pairs of points x and y in X. The following are axioms for d:

1. d(z,y) =d(y,x) Ve,yeX

2. 0<d(z,y) <o Vax,yeX,z#y

3. d(z,z) =0 VreX

4. d(z,y) <d(z,z)+d(z,y) Vx,y,z€ X

Definition 8. A space X is a set. The points of the space are the elements of the set.

A more intuitive way of interpreting the fractal dimension is to consider the geometric figure of a broken
curve, where the number of breaks of the curve is .4 (e) and the length of each piece is 1/e.

Example 3. If we look at Figure 3(b) we notice that there are two breaks, and that the length of the two
pieces are both \/1/2 the size of the original length Figure 3(a). Thus, the dimension of the Lévy Dragon
log(2)

e /NI

(a) level 1 (b) level 2 (c) level 3 (d) level 4

fractal, displayed in Figure 4, is D = = 2.

Figure 3: Lévy Dragon levels

2.2 Lévy Dragon

Figure 4 displays a Lévy Dragon Fractal, also known as the Lévy C Curve generated by a French mathe-
matician Paul Pierre Lévy. The base pattern used to produce this fractal is +F- -F+. Where + means to
turn 45°, F' means to draw a line, and - means to turn -45°. This basic pattern expanded recursively is what
produces this beautiful symmetric image. The coloring helps one see its natural progression.

Figure 4: Lévy Dragon Fractal

3 Tiling
3.1 Square Tiling

To best introduce the concepts discussed in [4] T will give two examples that demonstrate fractile tiling of
the Fuclidean plane R?, which is defined as

Definition 9. A countable family {A;} of compact sets that cover the plane with intA; N intA; = (0 for

i

For a given number of bounded sets, the interior of each set does not intersect the interior of any other
sets i.e. the tiling will have no over lap.

We will begin with a plane divide into squares. Each square has nine inner squares labeled 1 — 9 start-
ing from the lower left corner and ending at the top right corner. Now imagine that the square tiles 1, 3, 7,
and 9 have all been translated to their corresponding position in the square adjacent to their original square
as shown in Figure 5.

o
v
~

Figure 5: Pinwheel Fractal Pattern

Shown above is the Level 1 pattern for the Pinwheel Fractal. This pattern is allowable; a necessary prop-
erty for tiling, because otherwise the resulting fractal would have overlapping tiles and thus would not be
self-similar.

Definition 10. An allowable pattern is a pattern that contains each tile, represented by a number, in the
plane exactly once.

This process is then repeated for each individual pink square resulting in 81 squares, each one ninth the size
of the original square as shown in Figure 6(c).

(a) Level 0 (b) Level 1 (c) Level 2

Figure 6: Pinwheel Fractal Stages

(a) Level 3 (b) Tile T

Figure 7: Pinwheel Fractal Stages

The process is repeated indefinitely, and with each iteration we notice that the area has a limit of the

tile T, Figure 7(b), which has a side length of 3/ %. The tile T is connected because it is composed of
connected sets but does not have a connected region.

Definition 11. A region R is simply connected if it has no holes; all closed curves can be shrunk to a point
without passing through points in R€.

aa O

(a) Simply Connected (b) Not Simply Connected

Example 4.

Definition 12. A closed curve C is simple if it does not intersect itself.

(000

(¢) Simple) Not Simple
Example 5

Coloring the fractal stages to define a single iteration helps show that no square coincides with another
and the self-similarity of the fractal.

(e) Level 0 (f) Level 1 (g) Level 2

Figure 8: Pinwheel Fractal Stages

(a) Level 3 (b) Level 4

Figure 9: Pinwheel Fractal Stages

The objective in constructing these fractiles is to tile the Euclidean plane R?. After a finite number of
iterations the fractile reaches its limiting area. We then fit four identical fractals onto its boundary as shown
in Figures 10(a), 10(b), 11(a), and 11(b). Looking at each of the stages, having restrained our fractile
to be made up of an allowable pattern has paid off. Zooming in on the figures, each level 1 tile has preserved
the pattern and the plane is completely tiled.

(a) Level 2 (b) Level 3

Figure 10: Pinwheel Fractal Tiling the Euclidean plane

(a) Level 4 (b) Level 5

Figure 11: Pinwheel Fractal Tiling the Euclidean Plane

3.2 Triangle Tiling

As with the sqare tiling, for triangle tiling we need an allowable pattern. In Figure 12 the highlighted
triangle is our base figure. In this triangle there are nine inner triangles. The triangles labeled 2, 4, and
7 are displaced outwardly onto their corresponding positions in the triangles adjacent to the main triangle.
The triangles labeled 1, 5, and 9 are also relocated to their corresponding positions in the adjacent triganles.

The process is then repeated for each of those pink triangles. The second iteration produces the image in
Figure 13(c) and so on.

Figure 12: Triangle Pattern

(a) Level 0 (b) Level 1
v v
wy
vy
v
v
v v
v
v A A4
v v
v v
cc vV Vv
v
v

(c) Level 2

Figure 13: Triangle Fractal Stages

10

(a) Level 3 (b) Level 4
Figure 14: Triangle Fractal Stages
Similarily with the square tiling, we notice that by the fourth iteration Figure 14(b) there is a limit-
ing area. We repeat the same process as with the square tiling, but this time because the triangle fractal

has more symmetries, every adjacent fractile has to be rotated 60°. In each of the Figures 15(a), 15(b),
and 16 notice that there are two triangle fractiles fitted together without any overlap.

A
A
SR T 4

A

A
A

A
A
v A
v v
v v Q v v
v
5 A A 5
v v

(a) Level 2 (b) Level 2

Figure 15: Triangle Fractal Tiling of R?

11

Figure 16: Triangle Fractal Tiling of R?

3.3 Underlying Mathematics in Tiling

To tile the entire R? plane we need to think in two dimensions. Let us consider a (222) square matrix where
the columns will serve as the scaling factors of our tile, and the inverse M ! is a contractive mapping.

v=1% o] W

Definition 13. A transformations f : X — X on a metric space (X, d) is called contractive or a contraction
mapping if there is a constant 0 < s < 1 such that

d(f(x), f(y)) < s*d(z,y) Va,y€X.

The number s is called a contractivity factor of f.

Then for j = 1,...n% J. Palagallo & M. Salcedo then define the mappings

s(n) =l] (5

so the the square is scaled to 1/9 the original size of both the 2 and y components. The addition of r;
serves to translate the image. Its initial integer coordinates (z,y) given as the lower left corner of each of the
n? squares in the selected pattern. The set of functions {f;} and the set of vectors {r;} is special because
together they satisfy the requirements such that the IFS will converge to a compact set, the attractor. In
other words the functions will converge to our desired tiling.

Definition 14. An iterated function system consists of a complete metric space (X, d) together with a finite
set of contrative mappings wy, : X — X, with respect to contractivity factors s,, forn=1,2,...,N.

Theorem 1. Let {X;w,,n =1,2,..., N} be a hyperbolic iterated function system with contractivity factor s.
Then the transformation W : 7 (X) — #(X) defined by

for all B € 5 (X) is a contraction mapping on the complete metric space (X, h(d)) with contractivity
factor s. That is
h(W(B),W(C)) < s h(B,C)

12

for all B,C € £(X). Its unique fized point, A € 7€ (X), obeys

N
A=w(A) = [wa(A),

n=1
and is given by A = lim,—..cW°™(B) for any B € ()

Definition 15. The fized point A € ' (X) described in Theorem 1 is called the attractor of the IFS
(iterated function system).

4 Julia Sets (Fractals and Complex Analysis)

First, let us begin with something we are more familiar with. Let f(x) be an analytic function that maps the
extended complex plane C* onto itself and let R(z) = P(z)/Q(z) where € C*. The Julia set is the set of
points of the iteration of f(z), f(f---f(2)--+)), n times, n = 1,2,3,... The Fatou set of f(z) denoted by
F = F(z) is all the points in the extended complex plane that have an open neighborhood U such that the
itterations of f(z) to U form a normal family of analytic functions on U. The Julia set is the complement
of the Fatou set, and is closed. Since these two sets are complementary of each other on the extended plane,
we have the following result

Theorem 2. The Fatou set and and the Julia set of a rational function f(z) are invariant, that is, f(F) C F
and f(J)C T

Fundamental Properties of Julia Sets
e Jr # () and contains more than countable many points.
e The Julia sets of R and R¥, k =1,2,3, ..., are identical.
e R(Jr) = Jr = R (JR).
e V x € Jg the inverse orbit O, *(z) is dense in Jg.

e If v is an attractive cycle of R, then A(y) C Fr = {C Uocc} — Jr and 0A(y) = Jr

5 Conclusion

Palagallo and Salcedo’s paper on fractal tiling of the plane gives an artistic and colorful example of just
one of the areas of application for fractals. In building the code for the Lévy Dragon and other fractals,
I was amazed at how a recursive algorithm of such a simple pattern could produce such complex figures
that explain very different phenomena. Fractals even have a strong presence in complex analysis, which has
numerous applications in physics and engineering. This field of study certainly has potential to expand and
take foot hold into many areas of mathematics and the life sciences.

References

[1] Michael Barnsley. Fractals everywhere. Harcourt Brace Jovanovich, San Diego, 1988.

[2] J. L. Kelley and Isaac Namioka. Linear Topological Spaces, chapter 2, page 27. D. VAN NOSTRAND
COMAPNY, INC., Princeton, New Jersey, 1963.

[3] Benoit B. Mandelbrot. The fractal geometry of nature. W. H. Freeman and Company, New York, 1977.

13

© 00 N O Ut W N

I N R e e e e o
W NN R O © 0 g0 O keWwWN = O

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

[4] Judith Palagallo and Maria Selcedo. Symmetries of fractal tilings. World Scientific, 16(1):69-78, 2008.
[5] Dr. Heinz-Otto Peitgen and Dr. Peter H. Richter. The beauty of fractals, chapter 2, pages 27-29. Springer-

Verlag, Berlin, 1986. Images of Complex Dynamical Systems.

[6] Stuart Reges and Marty Stepp. Building Java programs. Pearson Addison Wesley, Boston, 2008. A Back

to Basics Approach.

Appendix A: JAVA Fractal Generators

Lévy Dragon
Ve

x Crista Moreno 05/21/09
* Produces Levy Dragon Fractal.

*/
import java.awt.x;
import java.util .x;

public class LevyDragon {
public static void main(String[] args) {

DrawingPanel

panel = new DrawingPanel (10000/3, 6000/3);

Graphics g = panel.getGraphics ();
drawlInstructions (buildInstructions (15), g);

panel.save (”

}

public static St
String axiom

LevyDragon.png”);

ring buildInstructions (int numberOfItr) {
— UF”;

for (int i = 0; i < numberOfItr; i++) {

axiom =

}

return axiom

}

7 ” 3 ” ” M ” ” .
+7 + axiom + "—" + axiom + "+ ;

)

public static void drawlInstructions(String instructions, Graphics g) {
Random r = new Random ();

Color custom
double ILeng

= new Color(0, 0, 0);
th = 25/3;

double currentAngle = 0;

double x = 2700.0/3;

double y = 4700.0/3;

for (int i = 0; i < instructions.length (); i++) {

char step = instructions.charAt(i);
switch (step) {
case 'F’:
double x2 = x + (lLength * Math.cos(currentAngle));
double y2 = y + (lLength * Math.sin (currentAngle));
if (i%40 = 0)

custom = new Color(r.nextInt (254), r.nextInt (254),
r.nextInt (254));
g.setColor (custom);

14

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

© 00 N O Ut ks W N

W W W W W NN DN DN DNDNDNDNDNDN = = e e e e e e
BW N R O © 00 0 Ui WKNFHFO®©WOW-NOO OB W = O

g.drawLine ((int) Math.round(x), (int) Math.round(y),
(int) Math.round(x2), (int) Math.round(y2));
X = X2;
y = v2;
break;
case '+7:
currentAngle += —Math.PI/4;
break;
currentAngle += Math.PI/4;
break;

case

}
Square Tiling

/x

x Crista Moreno 05/21/09

x Produces Square Tiling Pinwheel Fractal.
*/

import java.awt.x;

import java.util .x;

public class pinwheel {
public static void main(String [] args) {
DrawingPanel panel = new DrawingPanel (2000, 2000);
Graphics g = panel.getGraphics ();
drawInstructions(g);
// panel.save (” Pinwheel.png”);

}

public static void drawlnstructions(Graphics g) {
double x = 650;
double y = 650;
double length = 700.0;
Random r = new Random ();
drawInstructions(g, x, y, length, 3, r);

}

public static void drawlInstructions(Graphics g, double x, double y,
double length, int itr, Random r) {
if (itr = 3) {
g.setColor (new Color(r.nextInt(254), r.nextInt(254), r.nextInt (254)));

if (itr = 1) {
g.fillRect ((int) Math. floor(x), (int) Math. floor (y),
(int) Math. ceil (length), (int) Math. ceil (length));
} else {
length

= length /3;
itr —= 1;

15

35
36
37
38
39
40
41
42
43
44
45
46
47
48

© 00 N O Utk W N

W W W W W W N NN DNDNDNDNDDNDNDN F o e e e e e
CU R W N~ O © W O Ut WKNHFHFOO©OWSNOO U = W = O

}

x = X + length;
y =y + length;

drawInstructions(g, x, y, length, itr, r);

drawInstructions(g, x, y — length, length, itr, r);
drawInstructions(g, x + length, y, length, itr, r);
drawInstructions(g, x, y + length, length, itr, r);

(g
(g
(g
(g
drawlInstructions (g, x — length, y, length, itr, r);
drawInstructions (g
(g
(g
(g

, x 4+ 2xlength , y — length, length, itr,
drawInstructions (g, x — length, y — 2xlength, length 6 itr
drawlnstructions(g, x — 2«length, y 4+ length, length, itr,
drawlnstructions(g, x + length, y + 2xlength, length, itr,

Triangle Tiling

/x

x Crista Moreno 05/24/09
x Produces Frample Triangle Tiling Fractal.

*/

import java.awt.x;
import java.util .x;

public class triangleFractal {
public static final int SIZE = 500;
public static final int LEVEL = 3;

public static void main(String[] args) {

}

DrawingPanel panel = new DrawingPanel (1000, 750);
Graphics g = panel.getGraphics ();
drawInstructions(g);

panel.save(” Triangle_Fractal_level3 .png”);

public static void drawlnstructions(Graphics g) {

}

double[] x = new double[] {100+250, SIZE—100+250, SIZE/2+4250};
double [] y = new double[] {120+230, 120+230, SIZE—120+230};
g.setColor (Color .BLACK);

Random r = new Random ();

drawlInverted (g, x, y, LEVEL, r);

public static void drawlnverted (Graphics g, double[] x, double[] y,

int itr, Random r) {
if (itr = 2) {
g.setColor (new Color(r.nextInt(254), r.nextInt (254),
r.nextInt (254)));

if (itr = 0) {

g.fillPolygon (new int [] {(int) Math. floor (x[0]),
(int) Math. ceil (x[1]),

16

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

(int) Math.round(x[2])}, new int []
(int) Math. floor (y[1]),
} else {

itr —= 1;

double x2[];
double y2[];

(int) Math. ceil(y[2])},

double nBase = (x[1]—x[0])/3;

double nHeight
// upRight triangles

// triangle 4

x2 = new double[] {x[0], x[0] + nBase/2, x[0] + nBase};

(nBase /2)*Math. sqrt (3);

{(int) Math. floor (y[0]),

3);

y2 = new double[] {y[0] 4+ 2xnHeight, y[0] + nHeight,

y[0] + 2xnHeight };
drawUpRight (g, x2, y2,

// triangle 2

x2 = new double|[] {x[1] — nBase, x[1] — nBase/2, x[1]};

itr, 1);

y2 = new double[] {y[1] 4+ 2#«nHeight, y[1] + nHeight,

y[1] + 2«nHeight };
drawUpRight (g, x2, y2,

// triangle 1

x2 = new double[] {x[2] — nBase/2, x[2], x[2] + nBase/2};
y2 = new double[] {y[0] — 2xnHeight, y[0] — 3xnHeight,

y[0] — 2«nHeight };
drawUpRight (g, x2, y2,

// triangle 7

x2 = new double[] {x[2] — nBase/2, x[2], x[2] + nBase/2};

itr, 1);

itr , 1);

y2 = new double[] {y[0], y[0] — nHeight, y[0]};

drawUpRight (g, x2, y2,

// triangle 8

x2 = new double[] {x[0] + nBase/2, x[0] + nBase, x[2]};
y2 = new double[] {y[0] + nHeight, y[0], y[0] + nHeight };

drawUpRight (g, x2, y2,

// triangle 6

x2 = new double[] {x[2], x[2] + nBase/2, x[2] + nBase};
y2 = new double[] {y[0] 4+ nHeight, y[0], y[0] + nHeight };

drawUpRight (g, x2, y2,

// triangle 3

x2 = new double || {x[2] — nBase/2, x[2], x[2] + nBase/2};

itr, 1);

itr, r);

itr, 1);

y2 = new double[] {y[2] — nHeight, y[2] — 2+nHeight,

y[2] — nHeight };
drawUpRight (g, x2, y2,

itr , 1);

17

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

// triangle 9
x2 = new double []
nBase /2, x[2]
y2 = new double []
drawUpRight (g, x2
// triangle 5
x2 = new double []
nBase /2, x[2]
y2 = new double []
drawUpRight (g, x2

}

x[2] + 2xnBase,

{x[2
+ 3*nBase };
{v[2
2

, ¥y2, itr, r);

{

xnBase };

itr, 1);

2] — 3*nBase,

x[2] + 2+«nBase +

], v[2] — nHeight, y[2]};

x[2] — 3xnBase +

x [

2
{y[2], y[2] — nHeight, y[2]};
y2

public static void drawUpRight(Graphics g, double[] x, double]] ¥y,
int itr, Random r) {

if (itr = 2) {

g.setColor (new Color(r.nextInt (254),

r.nextInt (254)));

if (itr = 0) {

g. fillPolygon (new int []

{(int) Math. floor (x[0]),

(int) Math.round(x[1]), (int) Math. ceil (x[2])},

new int[] {(int) Math. ceil (

(int) Math. ceil(y[2])}, 3);

} else {
itr —= 1;

double x2[];
double y2[];

// inverted triangles

double nBase = (x
double nHeight =

// triangle 5
x2 = new double []

[2] =x[0])/3;

y[0]),

(nBase/2)*Math. sqrt (3);

{x[1] + 2#nBase,

x[1] + 3*nBase — nBase/2};

{y(1], y[1], y[1] + nHeight };
drawInverted (g, x2, y2, itr, r);

y2 = new double []

// triangle 9
x2 = new double []

{x[1] — 3*nBase,

x[1] — 2«nBase — nBase/2};
{y(1], y[1], y[1] + nHeight };
drawInverted (g, x2, y2, itr, r);

y2 = new double []

// triangle 8
x2 = new double []

{x[1] — nBase/2,

18

x[1] + 3xnBase,

x[1] — 2xnBase,

x[1] + nBase/2,

r.nextInt (254),

(int) Math. floor (y[1]),

x[1]};

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

© 00 N O Uk W N

—_
[e=]

y2 = new double []
y[1] + 2«nHeight };
drawInverted (g, x2, y2, itr, r);
// triangle 6
x2 = new double []
y2 = new double []
drawInverted (g, x2, y2, itr, r);
// triangle 8
x2 = new double []
y2 = new double []
drawlInverted (g, x2, y2, itr, r);

// triangle 7

x2 = new double []
y2 = new double []
drawlnverted (g, x2, y2, itr, r);

// triangle 2

x2 = new double []

y2 = new double []
y[1] + 2«nHeight };

drawlInverted (g, x2, y2, itr, r);

// triangle 4

x2 = new double []

y2 = new double []
y[1] + 2«nHeight };

drawInverted (g, x2, y2, itr, r);

// triangle 1
x2 = new double []

y2 = new double []
y[0] + 3x«nHeight };

drawInverted (g, x2, y2, itr, r);

}
DrawingPanel [6]

Ve

Stuart Reges and Marty Stepp
07/01/2005
The DrawingPanel class provides a simple

images using a Graphics object.
to keep track of what has been drawn.

{x[1], x[1] + nBase,
{y[0] — nHeight, y[0] — nHeight, y[0]};

{x[0], x[0] + nBase,
{y[1] + nHeight, y[1] + nHeight,

{x[1] — nBase/2, x[1] + nBase/2,
{y[0] + 2+«nHeight, y[0] + 2xnHeight,

{y[1] + nHeight, y[1] + nHeight,

{x[0] + nBase/2, x[1], x[0] + nBase};
{y[0] — nHeight, y[0] — nHeight, y[0]};

x[1] + nBase/2};

{x[1] — nBase/2, x[1] + nBase/2, x[1]};
{y[0], y[0], y[0] + nHeight};

x[0] + nBase/2};

{x[1] + nBase/2, x[2], x[2] — nBase/2};
{y[1] + nHeight, y[1] + nHeight,

x[1]};

interface for drawing persistent
An internal BufferedImage object
A client of the class simply

is used

constructs a DrawingPanel of a particular size and then draws on it with

the Graphics object, setting the background color

19

if they so choose.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

To ensure that the image is always displayed , a timer calls repaint at
intervals.

regular

*/

import
import
import
import
import
import

java.

awt . x;

java.awt.event .x;
java.awt.image . *;
javax.imageio . x*;
javax.swing . x;
javax.swing.event .x;

public class DrawingPanel implements ActionListener {
public static final int DELAY = 250; // delay between repaints in millis
private
private
private
private

private
private
private
private
private
private
private

static {
TARGET IMAGE FILENAME = System . getProperty (DUMPIMAGE PROPERTY NAME) ;
DUMPIMAGE = (TARGETIMAGE FILENAME != null);

}

static final String DUMPIMAGEPROPERTYNAME = ”drawingpanel.save” ;

static String TARGETIMAGEFILENAME = null;

static final boolean PRETTY = true; // true to anti—alias

static boolean DUMPIMAGE = false; // true to write DrawingPanel
// to file

int width, height; // dimensions of window frame

JFrame frame; // overall window frame

JPanel panel; // overall drawing surface

BufferedImage image; // remembers drawing commands

Graphics2D g2; // graphics context for painting

JLabel statusBar; // status bar showing mouse position

long createTime;

// construct a drawing panel of given width and height enclosed in a window
public DrawingPanel(int width, int height) {
this.width = width;

this. height

= height;

this.image = new Bufferedlmage (width, height ,
BufferedImage . TYPEINT_ARGB);

this.
this.
this.
this .
this.
this.

panel.
panel.
panel.

statusBar = new JLabel(”.”);
statusBar.setBorder (BorderFactory . createLineBorder (Color .BLACK));
panel = new JPanel(new FlowLayout(FlowLayout.CENTER, 0, 0));

setBackground (Color .\WHITE) ;
setPreferredSize (new Dimension(width, height));
add (new JLabel (new Imagelcon (image)));

// listen to mouse movement
MouselnputAdapter listener = new MouselnputAdapter () {

public

void mouseMoved (MouseEvent e) {

DrawingPanel. this.statusBar.setText (7 (” + e.getX() + 7,7

+ e.getY() +7)7);

20

62

63 public void mouseExited (MouseEvent e) {

64 DrawingPanel. this.statusBar.setText (7.7);
65 }

66 b

67

68 this.panel.addMouseListener(listener);

69 this.panel.addMouseMotionListener (listener);

70 this.g2 = (Graphics2D)image.getGraphics ();

71 this.g2.setColor (Color .BLACK);

72

73 if (PREITY) {

74 this.g2.setRenderingHint (RenderingHints . KEY_ANTTALIASING,
75 RenderingHints . VALUE_ANTTALIAS ON) ;

76 this.g2.setStroke (new BasicStroke (1.1f));

77 }

78

79 this.frame = new JFrame(” Drawing_Panel”);

80 this.frame.setResizable (false);

81 this . frame.addWindowListener (new WindowAdapter () {
82 public void windowClosing (WindowEvent e) {

83 if (DUMPIMAGE) {

84 DrawingPanel. this.save (TARGETIMAGE FILE NAME) ;
85 }

86 System . exit (0);

87 }

88 1}

89

90 this.frame.getContentPane ().add(panel);

91 this.frame.getContentPane ().add(statusBar, ”South”);
92 this . frame. pack ();

93 this.frame.setVisible (true);

04 if (DUMPIMAGE) {

95 createTime = System.currentTimeMillis ();

96 this . frame.toBack ();

97 } else {

98 this.toFront ();

99 }

100

101 // repaint timer so that the screen will update
102 new Timer (DELAY, this).start ();

103 }

104

105 // used for an internal timer that keeps repainting
106 public void actionPerformed (ActionEvent e) {

107 this.panel.repaint ();

108 if (DUMPIMAGE && System.currentTimeMillis () >
109 createTime + 4 % DELAY) {

110 this.frame.setVisible (false);

111 this . frame. dispose ();

112 this.save (TARGETIMAGE FILE NAME) ;

21

113 System . exit (0);

114 }

115 }

116

117 // obtain the Graphics object to draw on the panel

118 public Graphics2D getGraphics () {

119 return this.g2;

120 }

121

122 // set the background color of the drawing panel

123 public void setBackground(Color ¢) {

124 this.panel.setBackground(c);

125 }

126

127 // show or hide the drawing panel on the screen

128 public void setVisible (boolean visible) {

129 this.frame.setVisible (visible);

130 }

131

132 // makes the program pause for the given amount of time,

133 // allowing for animation

134 public void sleep (int millis) {

135 try {

136 Thread.sleep (millis);

137 } catch (InterruptedException e) {}

138 }

139

140 // take the current contents of the panel and write them to a file
141 public void save(String filename) {

142 String extension = filename.substring (filename.lastIndexOf(”?.”) + 1);
143

144 // create second image so we get the background color

145 BufferedImage image2 = new Bufferedlmage(this.width, this.height
146 BufferedImage . TYPEINT_RGB);

147 Graphics g = image2.getGraphics ();

148 g.setColor (panel. getBackground ());

149 g.fillRect (0, 0, this.width, this.height);

150 g.drawlmage (this.image, 0, 0, panel);

151

152 // write file

153 try {

154 ImagelO. write (image2, extension, new java.io.File(filename));
155 } catch (java.io.IlOException e) {

156 System.err.println (”? Unable_to_save_image:\n” + e);

157 }

158 }

159

160 // makes drawing panel become the frontmost window on the screen
161 public void toFront() {

162 this.frame.toFront ();

163 }

22

164 }

23

