
Helicity, Taylor Relaxation, Spheromaks: Self-Organizing Plasma

Christopher Raastad

Math 336 Term Paper

June 3 2009

1



Contents

1 Abstract 3

2 Introduction of Key Articles and Overview of the Paper 3

3 Plasma and Magnetic Fields 4
3.1 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Toroidal and Poloidal magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Helicity 6
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Simple Calculation: Two Singly Linked Flux Tubes . . . . . . . . . . . . . . . . . . . 7
4.3 Basic Measure of Helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3.1 Writhe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3.2 Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3.3 Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.4 More Complex Helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4 Sketch of Derivation of Twist Helicity KT = Φ2 . . . . . . . . . . . . . . . . . . . . . 9
4.5 Magnetic Reconnection and Helicity Conservation . . . . . . . . . . . . . . . . . . . 11
4.6 The Figure-8 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.7 Advanced Analytic Measure of Helicity . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Taylor Relaxation 13
5.1 Minimizing Magnetic Energy under Helicity Constraint . . . . . . . . . . . . . . . . 14
5.2 Interpreting the Eigenvalue λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Spheromaks 16
6.1 Cylindrical Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Spherical Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Creating the Spheromak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Ball Lightning/Magnetic Knots 19

2



1 Abstract

Plasma is the fourth state of matter, a fluid of ions and electrons violently striped by high thermal
energy governed by Magnetic and Electric forces. A simple fluid model of plasma, magnetohydro-
dynamics treats plasma as a contiguous fluid governed by a combination of Maxwell’s equations and
the Navier-Stokes equations. Magnetic Helicity, in simple terms, measures the amount of “linked-
ness”, “knottedness”, and “twistedness” of magnetic field lines inside plasma. The discretization
and measure of helicity, on its own, is an interesting application of mathematical knot theory.
More specifically, helicity is a topologically conserved quantity that in ideal, perfectly conducting,
plasma instills rigid topological restrictions allowing no magnetic field line breaks and reconnec-
tions. On the other hand, in actual non-ideal plasma with partial ohmic-resistivity, the magnetic
field lines are free to break and reconnect subject to topological restrictions of conserved global
helicity. Moreover, minimizing total magnetic energy under the constraint of total helicity results
in a magnetic field satisfying the force-free equation, ∇×B = λB for magnetic field B, a process
called Taylor Relaxation. This process accounts for the tendency for seemingly stochastically cre-
ated plasma to evolve over time to a “quiescent” organized state of minimum energy. In a singly
connected space with proper initial toroidal and poloidal fields, the resultant is a configuration
called a Spheromak with possible applications to fusion energy. Finally in a recent paper, (2000),
Rañada, Soler, and Trueba propose a model of the cryptic phenomena Ball lightning (aka. St.
Elmos fire) as a “Magnetic Knot” with it’s infamous properties governed by helicity invariance and
Taylor relaxation [10].

2 Introduction of Key Articles and Overview of the Paper

I formulated a discussion on helicity, Taylor relaxation, spheromaks, and ball lightning from major
ideas from a a collection of key papers with details filled in by two well written plasma textbooks.
J. B. Taylors two key papers, Relaxation of Toroidal Plasma and Generation of Reverse Magnetic
Fields (1974) [11] and Relaxation and magnetic reconnection in plasmas (1986) [12] are highly
referenced works discussing the plasma relaxation process, later named, Taylor relaxation. The
first is a short, mostly expository summary of results of minimizing magnetic energy under the
constraints of both global and local helicity, hence stating the force free equation ∇ ×B = λB,
and listing the magnetic field solutions for cylindrical coordinates. Taylor’s second paper summa-
rizes applying Taylor Relaxation to a multitude of plasma confinement geometries with well derived
solutions of the spheromak configuration, that is, a singly connected (like a sphere) containment
geometry. His discussion of helicity itself is somewhat minimal, nonintuitive, and uninteresting.
Fortunately, I stumbled over Pfister and Gekelman’s paper Demonstration of helicity conserva-
tion during magnetic reconnection using Christmas ribbons (1998) [7], a quite expository but very
intuitive discussion that clearly shows how helicity measures the twistedness, linkedness, and knot-
tedness of magnetic field lines with entertaining activities, demonstrations, and clear visualizations.
In addition, the paper acts a springboard to further reading, providing nearly 40 citations, more
than half extremely relevant. Now, the formal mathematical rigor I felt unfulfilled by previous
discussions of helicity was alleviated by H. K. Moffatt and Renzo L. Ricca’s Helicity and the Calu-
gareanu Invariant (1992), a rigorous, knot theoretical, treatment of helicity which, under the knot
theory Calugareanu invariant, can be quantified from the quantities self-linking number, writhe,
and twist of a magnetic flux tubes. In addition, Moffatt and Ricca discuss analytic, differential
geometry methods to compute these key terms and helicity. Next, one particular work of Antonio
F. Rañada, the mostly expository Ball lightning as a force-free magnetic knot (2000) [10], proposes
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a very enlightening toplogical model for the infamous phenomenon that nicely intertwines helicity
and Taylor Relaxation. Finally, I found the discussion of helicity, force-free magnetic fields, and
Taylor relaxation in Paul M. Bellan’s books Spheromaks (2000) [2] and Fundamentals of Plasma
Physics (2006) [3] to be very helpful in working out the particular details of discussed results.

In a general outline, I introduce the concept of Helicity by proceeding into an intuitive expository
discussion of its topological significance. Then I progress through deeper topological meaning,
analytical computations, and further definitions of helicity. Then I switch gears, delving more into
the derivation of Taylor relaxation and force-free magnetic fields. Next I discuss solutions to the
force-free equations, a particular example, the Spheromak configuration. Finally, I finish off by
giving an exposition of the keys points of the topological theory of ball lightning.

3 Plasma and Magnetic Fields

3.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) models plasma as a fluid of charged particles governed by the
Maxwell and Navier Stokes equations. I will give a brief definition and description of key equations,
taken from [5] with help from Dr. Angus McNabb, essential for the discussion of helicity and Taylor
Relaxation.

First, let us define fluid density by ρ = nm where n is the number density, that is the number
of particles per unit volume and m is standard mass of the particles and v as fluid velocity. We
define the continuity equation as

∂ρ

∂t
+∇ · (ρv) = 0.

This is similar to the Euler Equation, and is simply the conservation of mass relating change in
mass to divergence of the particle velocity field. Now we can rewrite this equation a little more
intuitively by distributing the divergence with the product rule,

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0

dρ

dt
+ ρ∇ · v = 0

dρ

dt
= −ρ∇ · v,

which now in the form of total time derivative gives us a measure of flux in particle velocity.
Next we define the pressure evolution equation by

d

dt

(
P

ργ

)
= 0

where P is pressure and γ = 5
3 . Pressure is usually P ≈ nKT where T is temperature, K

Boltzmann’s constant, and n number of particles. Again, we can write this more intuitively by
taking the derivative with product and chain rule

d

dt
[Pρ−γ ] = P

d

dt
[ρ−γ ] +

dP

dt
ρ−γ = −γPρ−γ−1dρ

dt
+
dP

dt
ρ−γ = 0

dP

dt
ρ−γ = Pρ−γ∇ · v

dP

dt
= γP∇ · v
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where we substituted the alternate form of the continuity equation in the second step. This new
form gives us the total time derivative of pressure in relation to velocity divergence. Note that in
this calculation we assumed adiabatic processes, otherwise we would have other diffusion terms.

Next I present Maxwell’s equations that define electromagnetism. Let E be the electric field,
B be the magnetic field, and J be current. We have Faraday’s law

∇×E = −∂B
∂t

describing the relation of E and B. Next we have Ohm’s law,

E + v ×B = kJ ,

where k is resistivity, which describes the relation of current and electromagnetic forces. Note that
in a perfectly conducting idealization, k = 0 Ohm’s law becomes E + v ×B = 0; we will use this
assumption later. Finally we have the global properties of the Magnetic Field, that is

∇ ·B = 0

meaning there are no magnetic monopoles and that

∇×B = µ0J

, where µ0 is the permeability of free space, describing current solely by the magnetic field.
Finally we combine the Navier Stokes and Maxwell equations to get the Force Balance, or

momentum evolution, equation

ρ
dv

dt
= J ×B −∇P.

Note that this is MHD Navier Stokes Equation. The quantity F ≡ ρdvdt resembles force, since ρ is
a mass distribution and dv

dt vector acceleration. Now we say a system is Force free if the quantity
ρdvdt = 0 meaning ∇P = J ×B.

In addition, we define the useful quantity β cleverly named the Beta of the plasma given by

β =
P

µ0B2

where B = |B|. This quantity essentially gives us a ratio of hydrodynamic pressure to magnetic
pressure in a plasma. In simple terms, magnetic pressure is the tendency for a plasma configuration
to expand and pinch due to magnetic and current forces. Consider a simple analogy, a toroidal
shaped plasma will tend to evolve from an initial shape resembling a thick small vespa tire to
a thin large bicycle tire. So, in consequence, a plasma with small β will be governed by mostly
electromagnetic forces while a plasma with high β will be governed by mostly hydrodynamic fluid
forces.

As a final note, if a plasma has very small β we can assume the pressure gradient term in the
force balance equations ∇p ≈ 0 and is negligible. Moreover, if the plasma is force free and low β,
then J ×B = 0 is the force balance equation.

3.2 Toroidal and Poloidal magnetic fields

In discussion of Taylor Relaxation and Spheromaks we will generally be considering toroidal mag-
netic fields confined in a cylindrical container. In cylindrical coordinates we describe this config-
uration by B(r, φ, z) = Brr̂ + Bφφ̂ + Bzẑ. We consider the quantity Brr̂ + Bzẑ to describe the
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Poloidal component of the magnetic field and the quantity Bφφ̂ to describe the toroidal component
of the magnetic field. The toroidal magnetic field will be aligned such that the hole of the torus
is punctured by a line in the direction of the ẑ axis of the cylinder. In a Spheromak the toroidal
components of field wrap around in the direction of the curvature of the cylinder and the poloidal
components wrap around the toroidal component through the hole of the torus. This magnetic field
configuration is beautifully visualized in Figure 9, the magnetic streamline plot of a Spheromak.

4 Helicity

4.1 Definition

Since Taylor [11][12] gave a rough derivation of the quantity in his two papers, I will consider Mofatt
and Ricca’s (1992)[6] rigorous topological treatment of helicity intermingled with the somewhat
simpler notation taken from the paper of Pfister and Walter (1990)[7]. Consider a solenoidal vector
field A(x) = ∇×A(x) defined on a set Ω ∈ R3 of compact support, where A is the magnetic vector
potential defined by ∇×A = B for every x ∈ Ω. We suppose that B · dS = B · n̂ = 0 on ∂Ω, the
boundary of Ω, where n̂ is a normalized normal vector at the boundary oriented outward, that is,
all magnetic field lines are contained within Ω; this can be achieved with a perfectly conducting
wall. Firstly, we define magnetic flux, Φ, which measures to the amount of magnetic field B that
penetrates a cross-sectional area S, as the surface integral

Φ =
∫
S
B · dS.

Then we define the pseudo-scalar quantity helicity K of B by

K =
∫

Ω
A ·B dV

where dV = d3x is the volume element and the quantity A ·B is integrated over the entire volume
Ω where B exists. It is important to question whether this definition makes sense, that is, whether
it makes sense to define A ·B an intensive property, meaning a physical property that does not
depend on the system size and amount of material in the system, and K as an extensive property of
a system independent of system size and amount of material. We see the definition of K does make
sense as it is gauge invariant. Suppose we perturb A by a scalar function f by letting A′ = A+∇f .
We find that B = ∇ × (A + ∇f) = ∇ ×A + ∇ × (∇f) = B is unchanged and moreover, since
B · n̂ = 0 by assumption, the integral

K ′ =
∫

Ω
A′·B dV =

∫
Ω
A·B dV+

∫
Ω
∇·(fB) dV =

∫
Ω
A·B dV+

∫
∂Ω

(fB)·n dS =
∫

Ω
A·B dV = K

using the divergence theorem [3]. Thus helicity is invariant under Gauge transformations and so
makes sense as a extensive property of the system. Clearly the intuitive meaning of this quantity
as a measure of twistedness and knottededness of magnetic field lines is unclear, so consider the
following calculation.
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4.2 Simple Calculation: Two Singly Linked Flux Tubes

Figure 1: Two linked, oriented, and unknotted flux tubes carrying appropriate uniform flux [6].

A flux tube is simply a region in space with a concentrated uniform magnetic field such that the
field on the sides is parallel to the tube. Both cross-sectional area and field containment may very
along the length of the tube, but the magnetic flux is always constant. Consider a system where
B = 0 except in two singly linked magnetic flux tubes C1 and C2 with volumes V1 and V2 and
uniform flux Φ1 and Φ2 as in Figure 1. The integral vanish outside V1 and V2 so we see the helicity
of the configuration is the superposition K = K1 +K2 where

K1 =
∫
V1

A ·BdV K2 =
∫
V2

A ·BdV.

Now applying Stokes theorem to our definition of flux above we have

Φ =
∫
S
B · dS =

∫
S

(∇×A) · dS =
∮
C
A · dx

where dS = n̂ dS denotes a vector normal to the area element dS, dx is the element of length,
and C is a closed curve bounding S [7]. So now we can rewrite dV = dS · dx where A ·B dV =
(A ·B)(dS · dx) = (A · dx)(B · dx) and so applying Fubini’s Theorem to rearrange integral terms
we have

K1 =
∮
C1

∫
S1

(A · dx)(B · dS) = Φ1

∮
C1

A · dx

since
∫
S1
B · dS = Φ1 by definition. Now by Stokes theorem we have

K1 = Φ1

∮
C1

A · dx = Φ1

∫
D1

B · n̂ dS = Φ1Φ2

since we are only picking up the flux flowing along curve C2 passing through D1 which is equal to
Φ2. Thus after calculating K2 by an identical symmetric argument we have K = K1 +K2 = 2Φ1Φ2.
[2][6][7]

4.3 Basic Measure of Helicity

We will discuss the three main topological forms of helicity measurement. For simplicity let us
discuss a configuration with all flux tubes containing the same flux Φ. We can model measuring
helicity contained in a twisted flux tube by drawing a line on the surface of a flux tube and and
count how often a given magnetic field line crosses this imaginary line [7].

4.3.1 Writhe
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Figure 2: Flux tube with 360◦ of twist [7].

The simplest helicity measurement is a 360◦

twist in a single flux tube as in Figures 2. This
will have helicity contribution of K = ±Φ2,
which can conceptually be thought of the flux
tube ’crossing’ itself once [2][7]. The contri-
bution is positive if we twist clockwise moving
along the direction ofB and negative if we twist
counterclockwise moving along the direction of
B (which can easily be visualized by using right
hand rule with the thumb pointing in the di-
rection of the flux and the fingers curling in a
positive direction of the twist). We will define
this as our elemental quantum of helicity. Later
we will rigorously derive the quantity Φ2 of a
single flux tube from the definition of flux [2,
p.43][6, p.417]. Also note that a Mobius strip,
a 180◦ twist will contribute ±1

2Φ2, half a unit,
of helicity.

4.3.2 Crossing

Figure 3: Flux tubes with one crossing and no
internal twist. Top tube contributes negative he-
licity while bottom contributes positive [7].

Each crossing, as in Figure 3, of the system
contributes K = ±Φ2 of helicity [2][7]. Again,
the sign can be determined by the right hand
rule; pointing your thumb in the direction of
the B along one of the flux tubes, if the curl
of your fingers coincides with the direction of
B along the other flux tube, then K is pos-
itive, otherwise K is negative. With a simple
experiment we can clearly see how this measure-
ment reduces to the twist case. Take a piece
of Christmas Ribbon, like Pfister and Walter,
connect the two ends such that we have a nice
smooth crossing as Figure 3, then pulling apart
the crossing into a circular ribbon to find a 360◦

twist, as in Figure 2.
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4.3.3 Linking

Figure 4: A sequence of helicity conserving operations on two singly linked flux tubes (a). We
carefully make a cut in (b) and reconnect and deform in (c) to show two 360◦ twists and further
deform in (d) to show two crosses [7].

Each knot ’link’ between two disjoint flux tubes
contributes K = ±2Φ2 helicity. Conceptually,
each link can be thought of as two singly linked
flux tubes, as calculated above in Figure 1 [2][7]. We define K to be positive if the link is a right
handed system, that is, point your thumb in one direction of B in one flux tube, if the curl of
your fingers points with the direction of B in the other tube, then the system is right handed and
contributes +2KΦ2 positive helicity, otherwise the system is left handed and contributes −2KΦ2

negative helicity. Also, we can conceptually reduce this case back to twist. Given two singly linked
Christmas ribbons, drawing B field arrows on both ribbons, if we cut both ribbons and carefully
reconnect them without twisting we will end up with two 360◦ twists in the ribbon; this is outlined
in Figure 4.

4.3.4 More Complex Helicity

Figure 5: The simplest knot, the trefoil knot.

For helicity calculations of a more complicated,
knotted field line configuration we can use su-
perposition and compute the sum of helic-
ity contributions from the three measurement
forms. For a more complicated example, con-
sider the Trefoil Knot, Figure 5. This con-
figuration has 3 crossings, thus a helicity of
K = ±3Φ2 (depending on right/left-handed-
ness of the knot, in the Figure 5 we have a right
handed knot) [7]. As we will see soon, we can
easily apply Mathematical knot theory [1] to any magnetic flux tube knot to compute the helicity.

4.4 Sketch of Derivation of Twist Helicity KT = Φ2

Our argument for twist above contained very little mathematical substance. Unfortunately, the
rigorous derivation of Twist helicity is unsatisfactorily complicated. Moffatt and Ricca give a brief
but uncomprehendingly sophisticated topological/knot theory argument [6]. Bellan’s Spheromak
book gives a clear but quite lengthy argument employing mostly multivariate calculus techniques
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with a change to toroidal coordinates carrying very nasty gradient and differential terms. In sum-
mary, the analytic argument to compute twisting helicity is based on modeling a writhed toroidal
flux tube as a winding toroidal field line with poloidal and toroidal flux (this is easy to visualized in
the streamline plot in the Spheromak discussion later). We derive the resulting helicity by taking
an infinitesimal approximation combining the two tubes. I will sketch the proof as well paraphrased
by Berger and Field’s discussion [4].

Figure 6: Visual demonstrating toroidal and
poloidal components of flux for a helically windy
flux tube around a torus [2]

Consider a volume consisting of nested toroidal
magnetic surfaces. Let ΨP be the poloidal flux
through the whole of the toroidal surface and
ΨT be the toroidal flux in within the surface.
For infintesimal annular volume containing flux,
(dΨT ,−dΨP ), the linkage helicity is with the
fields outside counted once is ΨP dΨT . Like-
wise, the linkage helicity with fields within the
surface is −ΨT dΨP . Thus the change in helic-
ity of the annular volume is dK = ΨP dΨT −
ΨT dΨP . Now let T = −dΨP

dΨT
, represent the

number of times a field line winds around the
torus in the poloidal (‘short way’) direction for
one circuit in the (‘longer’) toroidal direction.
Then integrating dK from [0,Φ] where Φ is the
total toroidal flux, integrating ΨP dΨT by parts
we have ∫

dH =
∫ Φ

0
(ΨP dΨT −ΨT dΨP )

= ΨPΨT −
∫ Φ

0
ΨT dΨP −

∫ Φ

0
ΨT dΨP

= ΨPΨT + 2
∫ Φ

0
TΨT dΨT

= TΦ2

for a uniformly twisted torus. Note the ΨPΨT term vanishes if we make the assumption that Φ
vanishes at the wall of our flux tube and the fact Φ vanishes on the magnetic access (i.e. center
of circular slices of tubular part of torus) [2, p.44]. And hence we get the desired results, where
T = 1, i.e., one 360◦ twist around the torus.
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4.5 Magnetic Reconnection and Helicity Conservation

Figure 7: A sequence of helicity conserving magnetic field line breaks and reconnections [2].

In an ideal MHD system, helicity for each flux tube is conserved, that is, the topological knot
properties are conserved and there is no breaking or reconnecting of flux tubes. We find, in a
non ideal system with small resistivity, local helicity is not conserved. In fact, we find there is
magnetic field breaking and reconnection, that is, field lines break and reconnect. Fortunately, as
demonstrated by Figure 7, field lines and break and reconnect precisely to conserve global magnetic
helicity. [2][11][12]

4.6 The Figure-8 Method

Figure 8: Example of applying helicity conserving breaks and reconnections to derive the helicity
of the Trefoil knot [4].

For an arbitrarily twisted, crossed, and knotted flux tube we can express K = KT + KK where
KT is the sum of twist helicity and HK is the sum of knot helicity. Note that this decomposition
is not topologically invariant because we can easily convert twists and crosses to one another. We
consider an ’untwisted’ tube as one in which we can draw a line on top of the tube for its entire
length as viewed from a planar projection without the line disappearing under the tube (picture
Christmas Ribbon). Now, this line on top of the tube sets θ = 0 in a poloidal coordinate system,
and we can measure HK from the number of crosses.

Alternatively we can measure helicity by applying helicity conserving flux tube disconnections
and reconnections as in Figure 8. At each cross over in a flux knot, we helically reconnect each
side (making sure field directions align without twists) to create a figure 7. Then we simply sum
this figure 8 crossing by their sign either N+ or N− defined by the right hand rule on the crossing
implying HK = Φ2(N+−N−). With the figure concluding the Trefoil knot has H = ±Φ2 depending
on orientation.
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4.7 Advanced Analytic Measure of Helicity

Now following the reasoning in Moffatt and Rica’s paper, we can do more by finding rigorous
analytic expressions for the writhing (twisting) and crossing numbers of an arbitrary magnetic flux
tube! Suppose a knot K is in the form of a closed curve C containing no inflection points (this can
be done for an arbitrary knot by applying continuous deformations). Consider some origin O and
define s to be the arc length with respect to this point and suppose there is some parameterization
of C given by x = x(s) where x is periodic with respect to L, the length of C. We define the
unit tangent vector as t̂ = dx

ds , the unit principle normal vector n̂ = ( dt̂ds)/|
dt̂
ds |, and binomial vector

b̂ = t̂× n̂ that satisfy the Frenet equations

dt̂

ds
− κn̂, dn̂

ds
= −κt̂+ τ b̂,

db̂

ds
= −τ n̂,

where κ(s) is the curvature and τ(s) is the torsion of C at position s along C. Notice if we had a
point of inflection where κ = 0 then our n̂, b̂, and τ would be undefined.

Now let T denote the surface of a flux tube running parallel along C constructed around K
with uniform flux Φ. We wish to find the helicity of T by considering the limiting behavior as the
cross section of T tends to zero. Now let the magnetic field B = Bt +Bp where Bt is toroidal
field in parallel in the direction of tube axis and Bp is poloidal field perpendicular to the tube
axis. When the cross section of the tube T is small we can adopt cylindrical coordinates (r, θ, z)
and assume we have Bt = (0, 0,Bz(r)) and Bp = (0,Bθ(r), 0). We must have ∇ · Bt = 0 and
∇ ·Bp = 0 to satisfy boundary definitions, hence we can have separate potentials Bt = ∇ ×At

and Bp = ∇×Ap with both ∇ ·At = 0 and ∇×Ap = 0. Moreover, force field traces of Bp are
unlinked circles thus the helicity integral

∫
T Ap ·BpdV = 0, and hence the helicity of the total field

is given by

K =
∫
T
At ·Bt dV +

∫
T
At ·Bt dV +

∫
t
Ap ·Bt dV

=
∫
T
At ·Bt dV + 2

∫
T
At ·Bp dV

using integration by parts and divergence theorem over T . Now let us consider both terms of the
integral individually.

First we need a reinterpretation of A. Recall the vector potential A is defined by B = ∇×A.
But, if we apply a Coulumb gauge for A, that is ∇ ·A = 0 and require A = O(|x|−3), meaning
A|x|−3 → 0 as |x| → ∞ then using the Biot-Savart law we can rewrite A(x) as

A(x) =
1

4π

∫
V ∗

B(x∗)× (x− x∗)
|x− x∗|3

dV ∗.

Moreover, the helicity integral can now be defined as

K =
1

4π

∫
V

∫
V ∗

[B(x∗)×B(x)] · (x− x∗)
|x− x∗|3

dV ∗dV.

Now considering the toroidal/axial component Kt =
∫
T At ·BtdV . In the limiting form as the

cross section width of T goes to zero we have the Biot-Savart form of A tending to

A(x) =
1

4π
Φ
∮
C

dx∗ × (x− x∗)
|x− x∗|3

.
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which diverges for x ∈ C, but the toroidal/axial component does not diverge, thus the limiting
expression for toroidal/axial helicity tends to

Kt =
1

4π
Φ2

∮
C

∮
C

(dx∗ × dx) · (x− x∗)
|x− x∗|3

= Φ2W

where W is the writhing (twisting) number of C otherwise called the writhe of C. Like above,
if we project C onto a 2-D plane curve with unit normal ν we can write W = 〈n+(ν) − n−(ν)〉
where n+(ν) is the number of positive crossings and n−(ν) is the number of negatives crossings by
crossing diagrams discussed earlier. With a similar argument we can define the crossing number C
by

C =
1

4π
Φ2

∮
C

∮
C

|(dx∗ × dx) · (x− x∗)|
|x− x∗|3

.

Note that the integrals for W and C are taken over all arc segements for all pairs of elements
dx, dx∗. Now from a complicated argument (which I conveniently omit) involving differentiating
under the integral argument and complicated coordinate transformations, Moffatt and Ricca define
the twisting parameter T as the total torsion normalized by a factor of 2π−1 by

T =
1

2π

∫
C
τ(s) ds

which we can expressed in a larger pararemter called twist, denoted Tw, computed in terms of a
normalized spanwise vector N on the ribbon relative to (n̂, b̂) and it’s derivative, N ′ ≡ dN

ds as

Tw =
1

2π

∮
C

(N ′ ×N) · t̂ ds = T +
1

2π
[Θ]C

in which we define N = 1
2π [Θ]C and they later show that

dKp

dt
= Φ2 dT

dt
.

It follows that Km = Φ2(T + T0) = Φ2(T + N ) where T0 ≡ N is the twist parameter (as above,
but not to be confused with twist number which is Tw = T +N ), an integer constant representing
the number of rotations of unit spanwise vector N on the ribbon relative to Frenet pair (n̂, b̂) in
one passing around C.

And so finally, we have the Calugareanu invariant, which state the linking number

n =W + Tw =W + T +N

where n represents the number of times a flux tube (or arbitrary knot for that matter) crosses itself
and hence the helicity is K = Φ2n for a tube of uniform flux Φ.

5 Taylor Relaxation

Now we will discuss, as in J. B. Taylor’s paper [11], how helicity plays a role in Taylor Relax-
ation, a process in which initially violent, unstable relaxes into a “quiescent” stable Taylor state
corresponding to a state of minimum energy. Taylor’s paper starts with the equation for perfectly
conducting fluid variations in a magnetic field, ∂B

∂t −∇× (v×B) = 0, where v is the fluid velocity,
and derives helicity K =

∫
V A ·B dV as the necessary conserved quantity. Although, the details

presented are vague and difficult to follow thus I prefer to discuss Paul Bellan’s [2] derivation of
the necessary differential equation ∇×B = λB using global helicity to minimize energy inside the
system!
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5.1 Minimizing Magnetic Energy under Helicity Constraint

We wish to describe this relaxed state with minimum energy consistent with (i) boundary condition
B·n̂ = 0 everywhere on S and (ii) the initial global helicity. Consider a plasma with low β, implying
the plasma forces are predominantly magnetic, enclosed in a simply-connected, perfectly conducting
surface S surrounding volume V . A perfectly conducting boundary implies a flux conserving system,
that is, B · n̂ = 0 everywhere on S. Suppose the plasma is initially not in equilibrium, possibly
undergoing magnetic reconnections described in an earlier section. By assumption all the magnetic
energy in this isolated configuration is free energy, meaning energy that can be extracted from the
system as work. When the plasma configuration expels all it’s free energy then it is at the point of
minimum energy, this is the Taylor State, and the energy releasing transition is Taylor Relaxation.
As discussed in a previous section, magnetic reconnections conserve helicity but not necessarily
magnetic energy.

Since B · n̂ = 0 this means there is no flux through every infinitesimal area of S, thus, the flux
dψ =

∮
C A ·dx = 0 where C is a contour around the perimeter of an infinitesimal surface ds . Since

dψ = 0 we conclude the component of A tangential to S vanishes, or at most is the gradient of
a scalar function. But, since S is a perfect conductor, the tangential component of magnetic field
vanishes on S and so there cannot be any change in the tangential component of vector potential
thus δA‖ = 0 where δ ≡ ∂

∂t the time derivative.
Now we simply need to reduce the total magnetic energy W =

∫
V

B2

2µ0
dV subject to the helicity

constraint K =
∫
V A ·BdV and boundary condition δA = 0 on S. This reduces to the calculus of

variations problem of minimizing W setting the variation δW = 0. We can factor in the helicity
constraint by adding a Lagrange multiplier of helicity. Hence we want to minimize

δW − λδK =
∫
V
B · δB − λ

∫
V

(A · δB +B · δA)dV = 0.

Using δB = ∇× δA we have∫
V
B · (∇× δA)dV − λ

∫
V

(A · (∇× δA) +B · δA) = 0.

Using the memorable vector identity ∇ · (F ×G) = G · (∇× F )− F · (∇×G) we have∫
S

(δA×B) · ds +
∫
V
δA · (∇×B)dV − λ

∫
S

(δA×A) · ds − 2λ
∫
V
B · δAdV = 0.

Since δA‖ = 0 the surface integrals vanish and so we have∫
V
δA · (∇×B − λB)dV = 0

and since δA is an arbitrary potential inside V the integrand vanishes and we derive the constraint
for B inside of V

∇×B = λB.

Magnetic fields satisfying this equation are called Taylor states and sometimes Woltjer-Taylor states
[11][13]. Using Amperes law in differential form, ∇×B = µ0J , we have that

µ0J = λB,
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which implies that B = µ0

λ J . Now, since we assumed β ≈ 0 we can disregard the ∇P term in the
Force Balance equations which implies

ρ
dv

dt
= J ×B −∇P ≈ J ×B = J ×

(µ0

λ
J
)

= 0

which shows that the plasma configuration is force-free and implies the Lorentz force F = q(E +
v ×B) = 0.

5.2 Interpreting the Eigenvalue λ

Moreover, the eigenvalue can be computed in terms of conceptually enlightening quantities [2][3].
We can rewrite the magnetic energy defined above as

W =
∫
V

B2

2µ0
dV =

1
2µ0

∫
V
B ·B dV =

1
2µ0

∫
V
B · (∇×A) dV

=
1

2µ0

∫
V

[∇ · (A×B) +A · (∇×B)] dV

=
1

2µ0

∫
V

[∇ · (A×B) + λA ·B] dV

using the vector identity B · (∇×A) = ∇ · (A×B) +A · (∇×B). Now integrating, we have∫
V
∇×B dV =

∫
V
λB dV

B = λA+∇f

for some scalar function f . Now we have the right and left term as∫
V
∇ · (A×B) dV =

∫
V
∇ · (A× (λA+∇f))dV = 0 +

∫
V
∇ · (A×∇f) dV

=
∫
V
∇ · [f(∇×A)−∇× (fA)] dV

=
∫
V
∇ · (fB) dV − 0

=
∫
S
fB · dS = 0,

using the vector identity ∇× (fA) = f∇×A+∇f ×A, the identity ∇ · (∇×A) = 0, applying
Stokes theorem, and the assumption B · dS = 0 on S for an isolated configuration. Thus we have

W =
1

2µ0

∫
V
λA ·BdV

λ = 2µ0
W∫

V A ·BdV
= 2µ0

∫
V B

2dV∫
V A ·BdV

= 2µ0
W

K
.

Thus λ can be conceptually thought of as energy
helicity of the isolated configuration. It is also the case

that λ, which is inferred from the initial values of the helicity invariant, determines the exact
force-free configuration of the plasma [11].
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6 Spheromaks

In the case of the spheromak, taking the curl of ∇×B = λB we have the equation ∇2B+λ2B = 0,
with λ = 0 on the boundary [2][11]. Taylor [12] simply lists the eigenfunction solutions to the force
free equilibrium for both spherical and cylindrical coordinates.

6.1 Cylindrical Container

From Bellan’s discussion [2] we see derivation in cylindrical coordinates is much simpler than that
in spherical coordinates. Reproducing the argument below, suppose S is a cylinder described by
cylindrical coordinates (r, φ, z) and make the approximation assumption that B ≈ exp(imφ+ ikz)
for m, k ∈ N. The z component can be written as the solution of

∂2Bz
∂r2

+
1
r

∂Bz
∂r

+
(
λ2 − k2 − m2

r2

)
Bz = 0,

with the solution
Bz = B0Jm(γr)eimφ+ikz

with γ =
√
λ2 − k2 and where Jm is the Bessel function Jα(x) =

∑∞
m=0

(−1)m

m!Γ(m+α+1)(x2 )2m+α. If
we split both B and ∇ operator into parallel and perpendicular components to z, the eigen-force
equations becomes

(∇⊥ + ikẑ)× (B⊥ +Bzẑ) = λ(B⊥ +Bzẑ),

with perpendicular component

λB⊥ − ikẑ ×B⊥ = ∇⊥Bz × ẑ

and taking the cross product of this equation with z gives us

ikB⊥ + λẑ ×B⊥ = ∇⊥Bz.

Thus we have a system of linear equations for variables B⊥ and ẑ ×B⊥ and the solving for B⊥
we find

B⊥ =
λ∇⊥ × ẑ + ik∇⊥Bz

λ2 − k2
.

Finally substituting the equation for Bz and taking the real component we have

Br(r, φ, z) = Re
[
iB0

γ2

(
mλ

r
Jm(γr) + kγJ ′m(γr)

)]
eimφ+ikz

= −B0

γ

(
mλ

γr
Jm(γr) + kJ ′m(γr)

)
sin(imφ+ kz)

Bφ(r, φ, z) = Re
[
B0

γ2

(
mk

r
Jm(γr) + λγJ ′m(γr)

)]
eimφ+ikz

= −B0

γ

(
mk

γr
Jm(γr) + λJ ′m(γr)

)
cos(imφ+ kz)

Bz(r, φ, z) = B0Jm(γr) cos(mφ+ kz).
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called the Chandrasekhar-Kendall equations. The lowest order solution with m = k = 0 giving the
Lundquist solution gives us

Br(r, φ, z) = 0
Bφ(r, φ, z) = B0J1(λr)
Bz(r, φ, z) = B0J0(λr)

all which are independent of z and φ and claimed to be quite accurate experimentally in long
axisymmetric cylinders with λ >> k.

Taylor’s discussion states different formulas [12]. In a cylinder of height h and radius a, for h
a > 1.67,

a critical value, the lowest eigenvalue is

λ =

√(
3.83
a

)2

+
(π
h

)2

and corresponding eigenfunctions are

Br = −B0kJ1(lr) cos(kz)
Bφ = B0λJ1(lr) sin(kz)
Bz = B0kJ0(lr) sin(kz),

where kh = π and la = 3.83.

6.2 Spherical Container

We find that in spherical coordinates of radius a the solution eigenfunctions are a great deal
more complicated, in these coordinates the solutions take the form of products of spherical Bessel
functions and associated Legendre functions

χnm = jm(λr)Pnm(cos θ)einφ

and through a complicated series of omitted calculations we have

Br = 2B0
a

r
j1(λr) cos θ

Bθ = −B0
a

r

∂

∂r
[rj1(λr)] sin θ

Bϕ = λaB0j1(λr) sin θ

where j1(x) = J3/2(x)√
x

.

17



6.3 Creating the Spheromak

Figure 9: Magnetic Field streamline trace of a Spheromak plasma configuration created in Visit
Visualization of data from the NIMROD simulation code courtesy of Dr. Angus McNabb.

In practical application, a Spheromak is created from initially applying a clever combination of
poloidal and toroidal magnetic field, such as the plasma gun or the discharge method as mentioned
in Taylor’s paper [11]. After turning off certain components of field, the arbitrary collection of
plasma releases it’s free energy though Taylor relaxation and settles into the force free state,
which in a singly connected container results in a Spheromak. The streamline in Figure 9 gives
a beautiful visualization a Spheromak created in a cylindrical container governed by equations
above. Typically, Spheromaks are more stable in cylindrical than spherical containers. Notice the
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different classes of field lines with different amounts of toroidal and poloidal field. The mostly
blue lines are almost nearly completely poloidal and circulate up and down through hole of the
toroidal structure. The red fieldlines are almost nearly completely toroidal and circulate around the
toroidal structure. Lastly, we have field lines with about equal components of toroidal and poloidal
field of varying magnitude that oscilate widely poloidal toroidally around the toroidal structure.
In practical application, fusion researchers are experimenting with stability of the Spheromak as a
possibility method for fusion confinement.

7 Ball Lightning/Magnetic Knots

Ball Lighting, also known as St. Elmo’s Fire in folklore, is an enigmatic electromagnetic phe-
nomenon describing a small bright “fireball” with unusual lifespan and unpredictable dynamics
created in, one scenario, from lightning strikes. It’s existence is somewhat controversial due to it’s
extreme rarity, lack of certain photographic evidence, and mostly, the difficulty to reproduce Ball
Lightning experimentally in a form conforming to eyewitnesses. Two decades of work by Antonio
F. Rañada applied to Ball Lightning are summarized in a paper by Rañada, Soler, and Trueba
[10]. The paper discusses a reasonable explanation of Ball Lighting, that I will summarize below,
by employing a topological model centered around the concept of “Magnetic Knots,” an electro-
magnetic structure composed of helicity conserved closed and knotted electromagnetic field loops.
For further reading, the mathematically sophisticated and enlightening concepts of Topological
Electromagnetism and Knotted Solutions to Maxwell’s equations are rigorously proposed in two of
Rañada’s papers [8] and [9].

Figure 10: A complicated magnetic knot. Any
two of the six lines are linked once. This also
represents electromagnetic streamers along which
current flows inside the fireball [10].

Rañada introduces the idea of the topological
model for Ball Lightning. Earlier work indi-
cated that linking of plasma streamlines and
magnetic lines has a stabilizing effect on the
configuration, a clue to explaining the most dif-
ficult part of the Ball Lightning mystery. As-
suming Ball lightning actually exists, the model
proposes that

a.) Only a small part of the fireball consists of
plasma of ionized air forming about 10−6

of the volume. This explains the overall
low radiation of ball lightning and why
it’s luminance if equivalent to that of a
household light bulb.

b.) The plasma is confined inside closed
’streamers’, very narrow channels of ion-
ized air along which electric current flows.
Since air at ambient temperature does not
conduct, these streamers are separated.
linked in some sort of knot, like that in
Figure 9.

c.) A magnetic field with linked and knotted
field lines, possibly like Figure 10, is coupled to the streamers.
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Moreover, the lightning ball is not really in equilibrium, but actually in expansion (which looks
like equilibrium because of the minute size of the ball). Also, the lightning ball isn’t purely elec-
tromagnetic but subjected to thermodynamic considerations. Now we can summarize the stability
properties as a consequence of

a.) the relaxation of the magnetic field to a force-free configuration, the same as discussed above.

b.) some solutions of Magnetic field obey the so called Alfven conditions, under which the light-
ning balls would remain stationary in the MHD approximation, neglecting radiation.

c.) the conservation of the Helicity integral as defined above.

Rañada then asserts the result of an experiment by Alexeff and Rader which confirms the creation
of closed magnetic loops from short circuited streamers, that is, discharges about the order of 10
Megavolts. These loops are said to “contract quickly becomeing compact force-free loops that
superficially resemble spheres” and “may be precursors to ball-lightning”. In consequence we can
safely assume under strongly stocastic conditions around the discharges (such as lightning strikes
in special conditions) these closed loops can form.

Citing his own paper, [8], knotted solutions of Maxwells’ equations are defined such that their
force lines are closed curves and that any pair of magnetic or electric lines is a link, that is turns
around each other a fixed number of times, that is product of linking numbers nmne. For ball
lightning’s concern, we only consider a purely magnetic field with E = 0. Suppose the magnetic
knot can be represented by a scalar function φ(x) for x ∈ V where V is a volume where the field
lines vanish outside. Consider the usual definition of helicity, K =

∫
V A · B dV . Now, with a

weakly resistive plasma, in the MHD approximation, we have the following resistive Ohm’s law,
µJ = E+v×B where µ is resistivity, J is current and v is fluid velocity. By assumption of V we
have

dK

dt
= −2

∫
V
E ·BdV = −2

∫
V
µJ ·BdV.

Clearly K is conserved if µJ = 0, otherwise field lines may break and reconnect as discussed in
an earlier section. Now, as discussed in one of the two of Rañada’s papers referenced above, any
magnetic field knot can be written as

B =
b

L2
f
(x
L

)
where L is a length scale, f a vector function, and b a normalization constant to make the dimen-
sions make sense.

Now, when consider a force free configuration, that is, where ∇ × B = λB Voslamber and
Callebaut [10, p.21] interpreted this in two ways

a.) all the minimum energy states are force-free fields

b.) force free fields may contain huge amounts of energy.

which, under Taylor relaxation, the plasma decays to a minimum of the energy that has a force-free
configuration, and this final state is stable because the magnetic force on the current vanishes and
the system cannot lose energy by rearranging it’s streamlines. Now under the MHD approximation
goverened by the Navier Stokes equations and Maxwell equation of the magnetic field; if v is plasma
velocity, p is pressure, and ρ is density, then we have the following,

∂v

∂t
+ (v · ∇)v = −1

ρ
∇
(
p+

B2

2µ0

)
+

1
µ0ρ

(B · ∇)B,
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∂B

∂t
= ∇× (v ×B) +

1
σµ0
∇2B,

where µ0 = 4π × 10−7 Wb/A m is vacuum magnetic permeability and σ is conductivity. When
σ =∞ then

v = ± B

µ0ρ
, p+

B2

2µ0
= const.

are stationary solutions; these are called the Alfven conditions. By being a force-free magnetic
field, then B and J = ∇×B

µ0
are parallel in the MHD approximation (as derived earlier). It follows

that in a force-free magnetic field, the Alfven conditions imply that both the electrons and the ions
move along the magnetic lines in opposite directions.

Now Ball Lightning formation in the topological model consists of two steps

a.) Linking of the lines: Near discharge of ordinary lightning, where air is ionized and streamers
are formed, powerful electromagnetic forces may cause streamers to short circuit and link
with one another, generating closed loops that behave like conducting linked coils. Also the
corresponding magnetic field lines with the system are linked, contributing a non-zero value
of helicity.

b.) Relaxation to a force-free configuration: A rapid Taylor relaxation process occurs almost
instantaneously resulting in a force-free magnetic knot coupled to the plasma inside the ion
streamers. The plasma is hot enough, in which resistivity is low enough, such that the
helicity integral is conserved. Now because of the force free condition and Alfven condition,
the magnetic field is parallel to the current such that ions and electrons move along streamers
in opposite directions. It follows that the current streamers and magnetic field lines have the
same linking numbers.

Since the feasibility of the creation of the fireball has been established, it is necessary to discuss
it’s evolution and death. Once the fireball has formed as described above, streamers of a fireball are
within a certain sized sphere, but magnetic field lines extend further off, vanishing at infinity. But
we cannot have equilibrium in this open system, thus an expansion occurs since magnetic pressure
cannot be compensated for. This energy balance forces the energy that ball loses by expanding to
be equivalent to the energy the fireball radiates away as brightness. The total energy of the system
can be expressed as

E =
B2gn
µ0L

where L is the radius of the smallest sphere containing all the streamers, and gn is a constant
depending on B(x) and the linking number n of the magnetic knot. Now an adiabatic expansion
occurs implying that L ∝ 1√

T
, explaining the slowness of the expansion. Also, the streamers cool in

this expansion, thus decreasing continuity, producing a deviation from helicity conservation. When
the conductive decreases past a critical point, the fireball ends it’s life as plasma containment
ceases.

References

[1] Colin C. Adams. The Knot Book. W. H. Freeman and Company, 1994.

[2] Paul M. Bellan. Spheromaks. Imperial College Press, 2000.

[3] Paul M. Bellan. Fundamentals of Plasma Physics. Cambridge University Press, 2006.

21



[4] M. A. Berger and G. B. Field. The topological properties of magnetic helicity. Journal of
Fluid Mechanics, 147:133–148, October 1984.

[5] Jeffrey P Freidberg. Ideal magnetohydrodynamics. Plenum Press, 1987.

[6] H. K. Moffatt and Renzo L. Ricca. Helicity and the calugareanu invariant. Proceedings of the
Royal Society London A, 439:411–429, November 1992.

[7] Hans Pfister and Walter Gekelman. Demonstration of helicity conservation during magnetic
reconnection using christmas ribbons. American Journal of Physics, 59(6):497–501, June 1991.

[8] Antonio F Ranada. Knotted solutions of the maxwell equations in vacuum. Journal of Physics
A: Mathematical and General, 23:L815–L820, April 1990.

[9] Antonio F Ranada. Topological electromagnetism. Journal of Physics A: Mathematical and
General, 25:1621–1641, July 1992.

[10] Antonio F. Ranada. Ball lightning as a force-free magnetic knot. Physical Review, 62(5):7181–
7190, November 2000.

[11] J. B. Taylor. Relaxation of toroidal plasma and generation of reverse magnetic fields. Physical
Review Letters, 33(19):1139–1141, November 1974.

[12] J. B. Taylor. Relaxation and magnetic reconnection in plasmas. Reviews of Modern Physics,
58(3):741–763, July 1986.

[13] L. Woltjer. A theorem on force-free magnetic fields. Proceedings of the National Academy of
Sciences, 44(6):489–491, May 1958.

22


