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1 Introduction

The normal distribution emerged out of probability in the first half of the eigh-
teenth century, introduced by Abraham de Moivre, a pioneer in the field. Gauss
used it to prove validate the least squares method at the beginning of the nine-
teenth century, and it, as if the importance of itself and Gauss was a unifying
factor, soon became known as the Gaussian distribution. While acting as central
to both probability and data collection in general, it also managed to become
important in matters like orthogonality, density, and in several real world appli-
cations. Its applicability to real world events became irrefutable with the advent
of quantum mechanics, which expresses the world probabilistically. The normal
distribution has been taken into several variables and generalized to create new
families of functions. Today not only mathematicians but the entire intellectual
world is at least basically acquainted with normal, skew-normal, and binomial
distributions.

2 Basic Properties

By far the most impressive property of the normal distribution is the way that
unaffiliated items seem to converge to it. A plot of random data will usually
shape into a normal distribution with enough data points. A plot detailing
the probability of sums from the rolls of several dice will converge to a Gaus-
sian shape, as will probabilities of the number of instances of a 50% chance
event when repeated several times (other probabilities will give skew-normal
shaped distributions first). Additionally, the sum of two normal distributions
is a normal distribution, and if a normal distribution results in the sum of two
independent variable each is normally distributed. Additionally, a distribution
is normal if and only if the variance of any part of it is independent of the
mean.1[2] The first cumulant, µ, of a normal distribution is its mean, and the

1For every mean one should be able to find any variance, and all variances for a single
mean, in samples from the distribution.
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second cumulant, σ2, is the standard deviation squared.2 A normal distribution
is defined in that it has all cumulants after the second zero. These parameters
give a normal distribution defined by 1

σ
√

2π
exp(− (x−µ)2

2σ2 .

3 Binomial/Skew-Normal Distributions

Binomial distributions are the actual distributions for several probabilistic phe-
nomena. They represent the ferquency of an event’s occurance at some cardinal
values. They are the distribution recieved by a repeated event of a certain
chance. They converge to normal distributions, but those with probabilities
other than 0.5 converge first to skew-normal distributions. Skew-normal dis-
tributions are of the form 1

σ
√

2π
exp(− (x−µ)2

2σ2 )(1+erf(λ(x−µ)

σ
√

2
)), where λ is the

skew parameter and erf is the error function, a variation on an integral of the
standard normal distribution.[1]

4 Perturbation of a Random Variable[4]

Z = X +
√
aY is our perturbed system with X and Y varying independent

variables with all moments finite and a ≥ 0.3 The cumulants are then of the
form κr(Z) = κr(X) + ar/2κr(Y ).4 Taking the derivative as a increases from
zero (one is essentially ‘adding’ the perturbation to an unperturbed system),
dκr

da |a=0+ = 0, as long as the cumulant is above 2.5 Then, take a derivative we
know must be nonzero, the derivative of κ2(Z)r/2 with respect to a at zero, and
combine it with the original to obtain a factor of κr(X) from the chain rule, so
that the derivative of the concatenated function is not trivial with respect to
r.6 In the paper this is done with d

da
κr(Z)

κ2(Z)r/2 |a=0+ = − rκ2(Y )κr(X)
κ2(X)r/2+1 . By adding

a perturbation you are causing the value of the higher function cumulants to
decrease proportionally to the second cumulant, by a factor of rκ2(Y )

κ2(X) . Since
r is always positive the cumulant ratios will always decrease, unless κr(X) is
zero, in which case the rate of change of its ratio with κ2(X)r/2 will also be zero.
Furthermore, the higher cumulant ratios will decrease faster than the lower ones,
and Y distributions with high standard deviation, as well as X distributions
with low standard deviations will get faster rates of change. Since all cumulants
ratios above the second are decreasing, the distribution is getting closer to a
corresponding normal distribution for small perturbations. Furthermore, it is
easily shown that this property is unique to normal distributions, and that

2nth cumulants are defined as the nth derivative of the cumulant generating function, the
natural logarithm of the expected value of the exponential of a variable times the distribution,
evaluated at zero.

3A moment of order n for X is the expected value of Xn.
4κr denotes the rth cumulant. The fact that κr(cX) = crκr(X) is a well known property

of cumulants.
5At two it goes to κ2(Y ), and the first cumulant’s derivitive is not well behaved
6We know that the κ2 of Z exists and is nonzero becuase we stipulated that the variables

be varying, and the second cumulant is related to the standard deviation.
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perturbation does not take cumulant ratios closer to any other distribution with
finite cumulants. Think of any distribution with cumulants finite. A distribution
halfway this distribution and a normal distribution will have lower cumulant
ratios, and these will decrease at the beginning of the perturbation. Therefore,
perturbation will actually cause the character of all other distributions with
finite cumulants to ‘slip away’.

5 The Normal Distribution

Even though the above perturbation property works only in additive pertur-
bation, not necesserily in any other type, it is still an extremely strong result.
Essentially, we can now conclude that the normal distribution is the mathe-
matical embodiment of randomness and of small disturbances. It is extremely
special and, if you believe quantum mechanics, is not only the building block
of probability, but describes everything, to a certain extent. Why it has the
properties that it does, and why those properties are so important is a bit of a
mystery. One of the other amazing things about the normal distribution is how
many different functions it seems to be related to. It seems to have just the right
balance to swing between several functions. Its generality lends itself to the cre-
ation of families as well, so it can be easily extended to several dimensions, or
be deregularized slightly into a group with still powerful properties.[3]
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