Math 336 Makeup Exam, Summer, 2008

Name:

One notebook-size page of notes is allowed (each side may be used).

1. Prove that $\Gamma(z)$ has a simple pole at -3 and compute its residue at this point.
2. Find the Green's function for the region $\{z:|z-1|<3\}$, with pole at 2 .
3. Let $u(x, y), v(x, y)$ be continuously differentiable as functions of (x, y) in a domain Ω. Let $f(z)=u(z)+i v(z)$. Suppose that for every $z_{0} \in \Omega$ there is an r_{0} (depending on z_{0}) such that

$$
\int_{\left|z-z_{0}\right|=r} f(z) d z=0
$$

for all r with $r<r_{0}$. Prove that f is analytic in Ω. Hint: Show that f satisfies the Cauchy-Riemann equations in Ω.
4. Suppose that u is harmonic on all of \mathbb{C} and $u(z) \geq 0$ for all $z \in \mathbb{C}$. Prove that u is constant. Is it true that a positive harmonic function on $\{(x, y): x+y>0\}$ is constant?
5. Let

$$
\begin{gathered}
g(x)=\left\{\begin{array}{l}
1, \text { if }|x|<1 \\
0, \text { if }|x|>1 ;
\end{array}\right. \\
h(x)=\left\{\begin{array}{l}
|x|, \text { if }|x|<1 \\
0, \text { if }|x|>1 ;
\end{array}\right. \\
f(x)=g(x)-h(x) .
\end{gathered}
$$

Compute the Fourier transform (my definition in class) of g, h and hence of f.
6. Suppose $f_{n}(z)$ is a sequence of analytic functions on an open set Ω and that $\left|f_{n}(z)\right|<1$ for all $z \in \Omega$. Suppose $\sum f_{n}(z)$ converges uniformly and absolutely on compact subsets of Ω. Prove that

$$
f(z)=\prod\left(1+f_{n}(z)\right)
$$

defines an analytic function and $f(z) \neq 0$ (f is never zero.)
7. Let $u(z)$ be harmonic in all of \mathbf{C}. Suppose $|u(z)| \leq c|z|^{n}$ for some positive constant c. Prove that u is the real part of a complex polynomial of degree n.

