Abel's Theorem on Fourier Series

March 2, 2011

Abel's theorem allows us to conclude that if the Fourier coefficients $\hat{f}(n) = c_n$ are known and f is piecewise continuous then f is determined.

Definition 1. Let 0 < r < 1 and define

$$A_r f(x) = \sum_{-\infty}^{+\infty} c_n r^{|n|} e^{inx}.$$

This series converges absolutely and uniformly in x to a continuous function of x for each r < 1.

Theorem 1. If f is piecewise continuous

$$\lim_{r \to 1^{-}} A_r f(x) = \frac{1}{2} [f(x^+) + f(x^-)].$$

If f is continuous, given an ϵ , there is a δ so that

$$|A_r f(x) - f(x)| < \epsilon$$

for all r such that $|r-1| < \delta$. We say $A_r f$ converges uniformly in x to f.

Proof. Let $P_r(t) = \frac{1}{2\pi} \sum_{-\infty}^{+\infty} r^{|n|} e^{int}$. Let $z = re^{it}$. Then

$$P_r(x) = \frac{1}{2\pi} \left[\frac{1}{1-z} + \frac{\bar{z}}{1-\bar{z}} \right]$$

$$= \frac{1}{2\pi} \left[\frac{1-|z|^2}{|1-z|^2} \right]$$

$$= \frac{1}{2\pi} \left[\frac{1-r^2}{1+r^2-2r\cos(t)} \right], \text{ and}$$

$$= \frac{1}{2\pi} [1 + \sum_{r=1}^{\infty} 2r^r \cos(nt)]$$

Integrating the last series term-by-term with respect to t we get

$$\int_0^{\pi} P_r(t)dt = \int_{-\pi}^0 P_r(t)dt = \frac{1}{2}.$$

Now let $\delta > 0$ and suppose $\delta \le t \le \pi$. By calculus we find that the minimum of $1 + r^2 - 2r\cos(t)$ on this interval is $1 + r^2 - 2r\cos(\delta)$. Hence on $\delta \le t \le \pi$

$$0 < P_r(t) \le \frac{1}{2\pi} \left[\frac{1 - r^2}{1 + r^2 - 2r\cos(\delta)} \right]. \tag{1}$$

Let us change variables and use periodicity, as in Dirichlet's theorem to write

$$A_r f(x_0) = \int_{-\pi}^{\pi} f(x_0 + t) P_r(t) dt.$$

Fix x_0 and choose δ so that $|f(x_0+t)-f(x_0^-)| \le \epsilon$ if $-\delta \le t < 0$ and $|f(x_0+t)-f(x_0^+)| \le \epsilon$ if $0 < t \le \delta$. Now that δ has been chosen, pick μ so that $0 \le P_r(t) < \epsilon$ if $0 < 1 - r < \mu$ when $\delta \le |t| \le \pi$, which we can do by (1). Then

$$A_r f(x_0) - \frac{1}{2} [f(x^+) + f(x^-)] = \int_{-\pi}^{-\delta} [f(x_0 + t) - f(x_0^-)] P_r(t) dt + \int_{-\delta}^{0} [f(x_0 + t) - f(x_0^-)] P_r(t) dt + \int_{\delta}^{\delta} [f(x_0 + t) - f(x_0^-)] P_r(t) dt + \int_{\delta}^{\pi} [f(x_0 + t) - f(x_0^-)] P_r(t) dt + \int_{\delta}^{\pi} [f(x_0 + t) - f(x_0^-)] P_r(t) dt$$

$$= I + II + III + IV.$$

We'll first estimate III. The estimate on II is similar.

$$|III| \le \epsilon \int_0^{\delta} P_r(t)dt \le \epsilon \int_0^{\pi} P_r(t)dt = \frac{\epsilon}{2}.$$

Next we estimate I (IV is similar).

$$|I| \le |\int_{-\pi}^{-\delta} [f(x_0 + t) - f(x_0^-)] P_r(t) dt| \le 2M |\pi - \delta| \epsilon \le 2\pi M \epsilon,$$

where $|f| \leq M$. So altogether we get

$$|A_r f(x_0) - \frac{1}{2} [f(x^+) + f(x^-)] \le \epsilon + 4\pi M \epsilon,$$

when $0 < 1 - r < \mu$. This proves the first statement. The δ chosen depends on x_0 and hence μ depends on x_0 . But if f is continuous on $[-\pi, \pi]$ it is uniformly continuous, so δ can be chosen independent of x_0 and then μ does not depend on x_0 . $A_r f(x)$ is uniformly close to f(x) if r is close enough to 1.