Abel’s Theorem on Fourier Series

March 2, 2011

Abel’s theorem allows us to conclude that if the Fourier coefficients f (n) = ¢, are known and f is
piecewise continuous then f is determined.

Definition 1. Let 0 < r < 1 and define
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This series converges absolutely and uniformly in z to a continuous function of x for each r < 1.

Theorem 1. If f is piecewise continuous
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If f is continuous, given an €, there is a § so that
[Arf(x) = fz)] <€
for all v such that |r — 1| < §. We say A, f converges uniformly in x to f.

Proof. Let P,(t) = & YT rInlet, Let 2 = re'. Then
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Integrating the last series term-by-term with respect to t we get
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Now let § > 0 and suppose § < ¢t < 7. By calculus we find that the minimum of 1 4 72 — 27 cos(t) on this
interval is 1 + 72 — 2r cos(d). Henceon § <t <7
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Let us change variables and use periodicity, as in Dirichlet’s theorem to write
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A f(xo) = f(zo +t)P-(t)dt.
Fix 2o and choose § so that |f(zg+t) — f(zg )| < eif =0 <t < 0and |f(zo+1t) — f(xg)] <eif 0 <t <.
Now that § has been chosen, pick u so that 0 < P.(t) < eif 0 <1 —r < g when 0 < [¢t| < 7, which we can
do by (1). Then
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We'll first estimate I11. The estimate on I is similar.
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Next we estimate I (IV is similar).
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where |f| < M. So altogether we get

1 _
[Arf(w0) = 5[F@*) + fa7)| < e+ dmMe,
when 0 < 1 —r < u. This proves the first statement. The § chosen depends on zg and hence u depends on
xg. But if f is continuous on [—, 7] it is uniformly continuous, so ¢ can be chosen independent of xy and

then u does not depend on xg. A, f(z) is uniformly close to f(x) if r is close enough to 1.
O



