Fourier Facts

March 4, 2008

Here is a list of facts (without proof) about Fourier analysis.

1. Suppose f is integrable (Riemann or Lebesgue) on $[-\pi, \pi]$ and $\hat{f}(n) = 0$ for all n. Then f = 0 almost everywhere (almost everywhere means except on a set of measure 0). If f is continuous then f is identically 0. Biefly

 $\widehat{f}(n) = 0$ for all $n \implies f = 0$ a.e.

- 2. Let $S_N(x) = \sum_{-N}^N \widehat{f}(n)e^{inx}$, where $f \in L^2([-\pi, \pi])$. Then $||f S_N||_2 \to 0$ as $n \to \infty$.
- 3. If $f, g \in L^2([-\pi, \pi])$ then $\langle f, g \rangle = 2\pi \sum_{-\infty}^{\infty} \widehat{f}(n)\overline{\widehat{g}}(n)$. Hence

$$||f||^2 = 2\pi \sum_{-\infty}^{\infty} |\widehat{f}(n)|^2$$

- 4. If $\sum_{-\infty}^{\infty} |c_n|^2 < \infty$ then there is $f \in L^2([-\pi, \pi])$ so that $\widehat{f}(n) = c_n$ (and $||f S_N||_2 \to 0$ as $n \to \infty$). (Riesz-Fischer theorem)
- 5. Let R^1 be the set of Riemann integrable functions on $[-\pi,\pi]$ and $R^2=\{f:|f|^2\in R^1\}$. We have proved $R^1\subset R^2$. Let L^1,L^2 be defined similarly for Lebesgue integration. It's a theorem that $L^2\subset L^1$. If $f\in R^1$ or $f\in L^1$ then $\hat{f}(n)$ is defined and the following is true (Riemann-Lebesgue lemma)

$$f \in \mathbb{R}^1$$
 or $f \in L^1 \Longrightarrow \hat{f}(n) \to 0$ as $n \to \infty$

6. Let $C^{k+} = \{f \in C^k : f^{(k)} \text{ is piecewise smooth}\}$. (This means that $f^{(k+1)}$ exists and is continuous except at finitely many points and at those points $f^{(k+1)}$ has left and right limits.) Note that $C^{k+1} \subset C^{k+}$.

$$f \in C^{k+} \Longrightarrow \widehat{f^{(k+1)}}(n) = (in)^{k+1} \widehat{f}(n)$$

Nothing is said here about convergence. Also

$$f \in C^{k+1} \Longrightarrow \widehat{f^{(k+1)}}(n) = (in)^{k+1} \widehat{f}(n)$$

7. If $f \in L^1$ or $f \in R^1$ and $n^{k+1+\epsilon} \widehat{f}(n) \to 0$, where $\epsilon > 0$, then $f \in C^k$. Briefly,

$$n^{k+1+\epsilon}\widehat{f}(n) \to 0 \Longrightarrow f \in C^k$$

1