
Math 427 homework 2.5.14

Eric Zhang

We give three proofs below. The first is a bit lengthy but with more detail. The second is given

by Prof. Marshall. The third clarifies the seemingly mysterious lemma in the exemplary solution.

Proposition 1. Let U be an open set and ∆ be a triangular contained in U . Consider the boundary

of ∆ to be a closed path with positive orientation, denoted as ∂∆. Let f be a function continuous on

U and analytic on U \ I for some interval I being one side of ∆. Then
∫
∂∆

f = 0.

proof 1: analysing the difference. Draw and label the vertices of ∆ as A,B, and C with boundary

α, β and γ oriented as follows. In particular ∂∆ = α+β+γ. Without the loss of generality, suppose

I coincides with γ. Then consider paths γn(t) = γ(t)+wn for some fixed wn ∈ C converging to zero,

such that γn is parallel to γ and intersects α and β at Pn and Qn respectively. Denote the paths

from Pn to B as αn and the paths from B to Qn as βn. Let the triangular region enclosed by αn,

βn and γn be ∆n. Similarly the boundary ∂∆n is a closed triangular path with positive orientation.

In particular ∂∆ = αn + βn + γn. Denote α′
n = α− αn and β′

n = β − βn

Consider the difference |
∫
∂∆

f −
∫
∂∆n

f | = |
∫
α′

n−γn+β′
n+γ

f | ≤ |
∫
α′

n
f |+ |

∫
β′
n
f |+ |

∫
γ
f −

∫
γn

f |.
Note

∫
αn+βn+γn

f = 0 as f is analytic on ∆n. It suffices to bound this difference by any ϵ > 0.

We use Taylor Theorem 2.4.9 to bound |
∫
α′

n
f | and |

∫
β′
n
f | because the length of α′

n and β′
n

approaches to 0. Since f is continuous on ∆ which is closed and bounded (hence compact in C), there

is a maximum M = supz∈∆ |f(z)|. It follows that |
∫
α′

n
f | ≤ Ml(α′

n) and similarly |
∫
β′
n
f | ≤ Ml(β′

n).
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Then we note
∫
γ
f−

∫
γn

f =
∫
γ
f(z)dz−

∫
γ+wn

f(w)dw =
∫
γ
f(z)dz−

∫
γ
f(z+wn)dz by a change of

variable w = z+wn. It follows that |
∫
γ
f−

∫
γn

f | = |
∫
γ
f(z)−f(z+wn)dz| ≤

∫
γ
|f(z)−f(z+wn)|dz.

Continuous functions on compact sets are uniformly continuous. So we can find a uniform bound for

the integrand |f(z)−f(z+wn)|.With a uniform bound, Theorem 2.4.9 applies to bound |
∫
γ
f−

∫
γn

f |.

Now we put all pieces together. Let ϵ > 0 be arbitrary. There exists N1 such that n ≥ N1

implies l(α′
n) < ϵ

3M since γn → γ uniformly. Similarly, there exists N2 such that n ≥ N2 implies

l(β′
n) <

ϵ
3M . Because f is uniformly continuous on ∆, there is δ > 0 such that |f(x)− f(y)| < ϵ

3l(γ)

whenever |x − y| < δ. Then there is N3 such that n ≥ N3 implies |wn| < δ. It follows when

n ≥ N3, since |z + wn − z| = |wn| < δ, we get |f(z) − f(z + wn)| < ϵ
3l(γ) . Now by Theorem 2.4.9,

|
∫
γ
f−

∫
γn

f | ≤
∫
γ
|f(z)−f(z+wn)|dz ≤ ϵ

3l(γ) l(γ) =
ϵ
3 . Take N = max{N1, N2, N3}. For all n ≥ N ,

we have |
∫
α′

n
f |+ |

∫
β′
n
f |+ |

∫
γ
f −

∫
γn

f | ≤ Ml(αn) +Ml(βn) +
ϵ
3 < ϵ.

proof 2: approximation by paths. Let ∆d be the triangle ∆ shifted vertically by d units, where d is

positive if B is above I and negative if B is below I. That is, ∆d = ∆ + id. For sufficiently small

d, since ∆d does not contain I, then f is analytic on ∆d and hence
∫
∂∆d

f = 0. It follows that

|
∫
∂∆

f(z)dz| = |
∫
∂∆

f(z)dz −
∫
∂∆d

f(z)dz| = |
∫
∂∆

(f(z)− f(z + id))dz| ≤
∫
∂∆

|f(z)− f(z + id)|dz.
Note f is uniformly continuous on the closed set enclosed by ∂∆d and ∂∆. Thus, for d sufficiently

small, |f(z)− f(z+ id)| can be bounded by any ϵ > 0. Then
∫
∂∆

|f(z)− f(z+ id)|dz < ϵl(∂∆).
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We may notice a pattern. Both proofs involve a sequence of paths converging uniformly to ∂∆.

So it is natural to wonder if the following statement holds.

Conjecture 1. Let {γn} be a sequence of smooth paths on [a, b] which uniformly converges to a path

γ. Suppose f is a function which is continuous on some open neighbourhood E containing all of γn

and γ. Then lim
∫
γn

f =
∫
γ
f.

Unfortunately this is not true because γ′
n may not converge even if γn converges uniformly and are

smooth. Consider the following sequences of real functions fn = sinnx√
n

defined on R and gn = 1√
n
xn

defined on (0, 1]. Without uniform convergence on the derivative, the integrands of line integrals

may not converge uniformly. So we need stronger assumptions.

Lemma 1. Let {γn} be a sequence of smooth paths on [a, b] that converges pointwise to a function γ

where γ′
n uniformly converges to a function g. Suppose f is a function which is continuous on some

open neighbourhood E containing all of γn and γ. Then lim
∫
γn

f =
∫
γ
f.

Proof. Because γ′
n → g uniformly and γn smooth, by a classical result in real analysis, γn converges

uniformly to γ which is differentiable with γ′ = g. This is Rudin Theorem 7.17. Then
∫
γ
f is well-

defined. Next we write
∫
γn

f =
∫ b

a
f(γn(t))γ

′
n(t)dt and

∫
γ
f =

∫ b

a
f(γ(t))γ′(t)dt. It suffices to show

the sequence {gn = f(γn)γ
′
n} converges uniformly to g = f(γ)γ′. Since γn → γ uniformly we can

find a compact neighbourhood K containing a k-tail γn+k and γ, on which f will be uniformly

continuous. It follows f(γn+k) → f(γ) uniformly on K. It is clear that all of our functions are

bounded on K. Therefore the sequence of products f(γn+k)γ
′
n+k → f(γ)γ′ uniformly on K.

proof 3 of Proposition 1. Note sequences of paths ∂∆d converges uniformly to ∂∆. Or we may think

there are three uniformly convergent sequences of straight-line paths. Because each sequence of paths

are parallel lines, their derivatives are constant and are the same, and thus converges uniformly. By

lemma 1,
∫
∆
f = lim

∫
∂∆d

f = 0.
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