Elementary Maps

i this chapter We W 1l study the mapping properties of the elementary functions and their
~ompositions. The emphasis will be on the behavior of LFTs and the power, trigonometric
.nd exponential functions related to familiar elementary functions of a real variable. These
qunctions are all butl from linear functions a + bz, ¢* = Y ¢~ 7"/n! and its locally defined
averse log 2 using algebraic operations and composition.

To facilitate our study, we will illustrate these functions using color pictures. Figure 6.1(b)
dows a polar grid on the plane, where rays are colored using a standard color wheel in
ounter-clockwise order beginning along the negative reals: red, yellow, green, cyan, blue,
nagenta, red. Circles of radius (1 + €)", n = —6,...,6, are also plotted using a gray scale,
ncreasing in darkness with the modulus except for the unit circle which is plotted in black
©ith a thicker line width for emphasis. We will call this picture the standard polar grid. A
“picture” of a complex-valued function f can be created by plotting points z using the same
color that f(z) has on the polar grid. For example, the Figure 6.1(a) shows the plot of a rational
function. The rational function is a map from Figure 6.1(a) to the polar grid in Figure 6.1(b).
Note that the colors near z = 3 cycle twice around in the same order as in the polar grid n
Figure 6.1(b). This means that there is a zero of order 2 at z = 3. The colors near 2i and near
-2i cycle once in the opposite, or clockwise, order. This means that the function has poles of
order one at +2i. In fact, it is a picture of the function (z — 3)2 /(z* + 4). The preimage of the
unit circle s black.
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In Exercise 2.6. we encountered the function Note that, wi

the interval (—7

e‘ = e'e”? = e*(cosy + isiny).
This function maps the horizontal line y = ¢ onto the ray arg z = ¢ trom 0 to oo, and it maps

cach segment of length 27 in the vertical line x = ¢ onto the circle
mapped onto the standard polar grid by the map ¢-.
By Exercise 2.7(a). % adig-.-

z| = e°. Figure 6.3(a) is
: e*, which is non-zero, so ¢° has a (local) inverse in a neighbor- If $2 1s a simply-
hood of each point of C\ 10}, called log z. As we saw in Corollary 5.8(iii), log z can be defined
as an analytic function on some regions which are not just small disks. For example, the func-

ion z is non-zero on the simply-connected region C \ (—oo, 0]. Then. log z, with log 1 = 0, is where log z can b
the function given by
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If instead we specified that log1l = 2, then (6.5) holds with 7 < arg 7 < 3. If Q (=00, O] by this m

=€, —00 < @ < o0, they

| n 2. In this case we can still specify, for
, and this uniquely determines the function log 7 on Q.

Figure 6.3 Maps e® and log z.
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For example, suppose Q@ = C \ (=00, 0
t <, thenz'/* = rl/4¢i/4 Figyre 6.4(a) i

(—00,0] by this map. The image of a sect
sector {7 : |argz| < B/4}. Points Z on the circl

s locally conformal in $2, but it is not conformal at () Indeed, angles

As with the logarithm, it might be easier to understand this map using Figure 6.4(b), which

shows the image of the subset C \ (—00, 0] of the standard polar grid by this map. Note the
range of colors and the location of the level lines. There are four possible definitions of z!/4

on C\ (—o0, 0], depending on the choice of log(1) = 2mki, where k is an integer. Each of
the femaining three are rotations of Figure 6.4(b) by integer multiples of 2z /4. If we put
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which is analytic in 1 {0}. See Figure 6.6, By the quadratic formula,

Z:w:};\/wz - 1, (6.6)
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s that w is two-to-one uniess w | Since w(z) = w(1/z), the two roots in (6.6) are

reciprocals of each other, one inside IJ and one outside ), or else complex conjugates of each
other on dU).

To understand the function w better, we view it as a one-to-one map on various subsets of
~ Fix r > 0 and write z = re”, then
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If we also write w = u + iv, then
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which 1s the equation of an ellipse, unless r = 1. For each r # 1, the circles of radius r and
| /r are mapped onto the same ellipse. The circle of radius r = 1 is mapped onto the interval
—1.1]. We leave as an exercise for the reader to show that the image of a ray from the origin
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Figure 6.6 The map (z+ 1/2)/2.
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Figure 6.8 The map cos(z).
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Figure 6.14 “World’s greatest functiop
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