Midterm 2

Problem 1. (20 points) The two questions are independent. Let f be the function given by:

$$
f(x,y) = 1 + \sqrt{x^2 - 2xy}
$$

(a) (10 points) Find the domain of f and plot it in the xy-plane.

(b) (10 points) Find the equation of the tangent plane to the graph of f at the point $(1, 0)$.

Problem 2. (20 points) f be the function given by:

$$
f(x,y) = \sqrt{x^2 + 3xy}.
$$

Using the linear approximation of f at $(10, 10)$, find an approximate value for $f(11, 12)$. You will not get any credit if you compute $f(11, 12)$ using your calculator instead of the linear approximation.

$$
\begin{aligned}\n\mathcal{J}(10,10) &= \sqrt{100+300} = 20; \\
\mathcal{J}(11,12) &\triangleq \mathcal{J}(10,10) + \mathcal{J}_{\times}(10,10) (11-10) \\
&\quad + \mathcal{J}_{\times}(10,10) (12-10) \\
&= 20 + \mathcal{J}_{\times}(10,10) + 2\mathcal{J}_{\times}(10,10)\n\end{aligned}
$$

$$
\oint_{X} = \frac{\lambda x + 3y}{\lambda \sqrt{x^2 + 3x}y} , \quad\n \oint_{X} (19,10) = \frac{50}{2 \cdot 20} = \frac{5}{4}j
$$

$$
\frac{9}{2} = \frac{3x}{2\sqrt{x^2 + 3}x}
$$
, $\frac{9}{2}y(10,10) = \frac{30}{2.20} = \frac{3}{4}$.

 $f(11, 12)$ 1 20 + $\frac{5}{4}$ + 2. $\frac{3}{4}$ = 22.75

Problem 3. (20 points) Let f be the function given by:

$$
f(x,y) = \mathbf{X}^3 + \mathbf{y}^3 - 3\mathbf{X}\mathbf{y}
$$

Find all critical points of f and identify whether they correspond to local minima, local maxima or saddle points.

$$
\begin{cases}\n\oint_{X} = 3x^{2}-3y = 0 \\
\oint_{Y} = 3y^{2}-3x = 0\n\end{cases}
$$
\n
$$
\Leftrightarrow \quad \int_{Y} x^{2} = y \quad \text{Hence } x, y \ge 0 \text{ and}
$$
\n
$$
\Leftrightarrow \quad \int_{Y} y^{2} = x \quad \Leftrightarrow x = 0 \text{ or } x = 1.
$$

$$
\begin{array}{l}\n\text{If } x = 0: \quad y^2 = 0 \Rightarrow y = 0. \\
\text{If } x = 1: \quad x^2 = y, \Rightarrow y = 1. \\
\text{Gritical point: } (0,0) \text{ and } (1,1).\n\end{array}
$$

$$
2^{nd}
$$
 devivative:
 $\begin{cases} 2x = 6x \\ 8xy = 3 \\ 9y = 6y \end{cases}$

At (l, l) :

bal minimum.

Problem 4. (20 points) Let f be the function given by:

$$
f(x,y) = x^2 + 2y^2 + 3y
$$

Find the global minimum and the global maximum of f in the set

 $S = \{(x, y) \mid x^2 + y^2 \le 16\}.$

$$
\begin{aligned}\n\text{With } x^2 + y^2 &= 16 \\
x^2 &= 16 - y^2\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{With } x^2 + y^2 &= 16 - y^2\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{If } (x, y) &= 16 - y^2 + 2y^2 + 8y \\
&= (y^2 + 8y + 16) \\
&= (y^2 + 4y)^2 = g(y)\n\end{aligned}
$$

Since $g'(y)=2(y+4)\geq 0$, g io nendecrearing on [-4,4] so its misimum value is g(-4)=0 and maximal value is $g(4)=64$. Since $x = 16 - y^2$, we find:

$$
\begin{cases} \n\text{or } y = -4: & x = 0, \\ \n= 0; \n\end{cases} \quad \begin{cases} \n\text{(0, -4)} = 2.16 - 32 \\ \n= 0; \n\end{cases}
$$

$$
\oint \varphi z \psi = 4: x = 0, \quad \oint (0,4) = 2.16 + 32
$$

= 64.

Hence: the minimum value off à -8 (it is local minimum in the interior and the mirimum on the boundary is higher); and the maximal value is 64 (it is the maximum on the boundary and there are no other bal extremum in the interior).

Problem 4. (20 points) The two questions are independent. Let $\vec{r}(t)$ be the curve of equation $\vec{r}(t) = \langle 4t, t^2, t^3 \rangle$.

(a) (10 points) Find a point on this curve whose tangent line is parallel to the line of equation

$$
\begin{cases}\nx = 4t \\
y = -2t \\
z = 3t\n\end{cases}.
$$

The directions vector is
$$
\langle 4, -2, 3 \rangle
$$
.
\nMereven, $r(t) = \langle 4, 2t, 3t^{2} \rangle$.
\nSo we should have:
\n
$$
\begin{cases}\n4 = 4 \\
2t = -2 \Rightarrow 2t = -1 \\
3t^{2} = 3\n\end{cases}
$$
\n
$$
\begin{cases}\n4 = 4 \\
2 = 1\n\end{cases}
$$
\nSo $\frac{1}{2}(1) = \langle -4, 1, -1 \rangle$ represents
\nthe problem.

(b) (10 points) Find the curvature of $\vec{r}(t)$ at the point $B(0, 0, 0)$.

$$
\frac{1}{\lambda}(t) = \langle 4, 2t, 3t^{2} \rangle
$$
\n
$$
\frac{1}{\lambda}(t) = \langle 0, 2, 6t \rangle
$$
\n
$$
\frac{1}{\lambda}(0) = \langle 4, 0, 0 \rangle
$$
\n
$$
\frac{1}{\lambda}(0) = \langle 0, 2, 0 \rangle
$$
\n
$$
\frac{1}{\lambda}(0) = \langle 0, 2, 0 \rangle
$$
\n
$$
R = \frac{|\lambda(0) \times \lambda(0)|}{|\lambda(0)|^{3}} = \frac{|\langle 4, 0, 0 \rangle \times \langle 0, 2, 0 \rangle|}{\sqrt{4^{2}}}
$$
\n
$$
= \frac{8}{4^{3}} = \frac{8}{64} = \frac{1}{8}
$$