Problem 1. (a) (10 points) Show that the points $A(0, 0, 1)$ and $B(1, 2, 3)$ belong to the curve of equation

$$
\vec{r}(t) = \langle t^3, 2t^3, 2t^3 + 1 \rangle.
$$

• To check that A belongs be this wave, is
\n
$$
x_0\begin{cases}\nt^2 = 0 \\
x_0\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 0 \\
x_0\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 0 \\
x_0\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 0 \\
t^2 = 0\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 0 \\
t^2 = 0\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 0 \\
x(0)\begin{cases}\n0 \\
0\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 0 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 0 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n
$$
x_0\begin{cases}\nt^2 = 1 \\
t^2 = 1\n\end{cases}
$$
\n<

Gemment:
\ngeu get full credit for simply
\nnetiting
$$
\vec{x}(0) = \langle 0, 0, 1 \rangle
$$

\n $\vec{x}(1) = \langle 1, 2, 3 \rangle$.

(b) (10 points) Find the length of this curve between $A(0,0,1)$ and $B(1,2,3)$.

Since A corresponds to
$$
k=0
$$
 and B
\ncorresponds to $k=1$, this length is
\n
$$
\int_{0}^{1} |\vec{x}'(t)| dt.
$$
\n
$$
\vec{x}'(t) = \langle 3t^2, 6t^2, 6t^2 \rangle
$$
\n
$$
|\vec{n}'(t)| = \sqrt{(3t^2)^2 + (6t^2)^2 + (6t)^2}
$$
\n
$$
= \sqrt{81 \cdot t^4} = 9t^2
$$
\nSo
$$
\int_{0}^{1} |\vec{n}'(t)| dt = \int_{0}^{1} 9t^2 dt = 9 \cdot \frac{t^3}{3} \Big|_{0}^{1} = 3
$$
\nThe length is 3.
\n
$$
\frac{Gmment}{B} = \frac{13}{100} \text{ such that } \frac{1}{100} \text{ gives the value of } \frac{1}{100} \text{ to } \frac{1}{100} \text{
$$

Problem 2. (20 points) Find the intersection of the two lines of equation:

$$
\begin{cases}\nx = 2 + t \\
y = 3 - t \\
z = 1 - 2t\n\end{cases} \text{ and } \begin{cases}\nx = 1 + t \\
y = 1 + 2t \\
z = 4 - 3t\n\end{cases}
$$

Hint: be careful about setting the right equation!

These case, parameters line lines! to find the intersection of the two graphs, we must use independent parameters:

\n
$$
\text{What is, values:}
$$
\n
$$
2+t = 1+2x \iff \begin{cases} 3-t = 1+2(1+t) \\ 1-2t = 4-3x \end{cases}
$$
\n
$$
\Rightarrow \begin{cases} 3-t = 1+2(1+t) \\ 1-2t = 4-3 \end{cases}
$$
\n
$$
\Rightarrow \begin{cases} 3-t = 1+2(1+t) \\ -2t = 2t \end{cases}
$$
\n
$$
\Rightarrow \begin{cases} 3=1 \\ -2t = -3t \end{cases}
$$
\n
$$
\Rightarrow \begin{cases} 3=1 \\ t = 0 \\ t = 0 \end{cases}
$$
\n
$$
\Rightarrow \begin{cases} 3, \text{these two lines intersect at } t \end{cases}
$$
\n
$$
\begin{cases} x, y, z = (2, 3, 1) \\ y, z = (2, 3, 1) \end{cases}
$$

Problem 3. (a) (10 points) Find a vector-valued function whose graph is the intersection of the surfaces $(x-1)^2 + (y+2)^2 = 9$ and $x^2 - z = 1$.

(b) (10 points) Find the equation of the line that, at $t = 0$, is tangent to the graph of the vector-valued function

$$
\vec{r}(t) = \langle -t, \cos(2t), 3t^2 \rangle \cdot 3t \rangle
$$

We have $\overrightarrow{x}(0) = \langle 0,1,0 \rangle$. This point must le en tre tangent lire. Moreaver, the direction of the tampent line \overrightarrow{n} (0). Since $\vec{x}'(t) = \{-1,-2\sin(2t), 6t + 3\},$ $\vec{x}'(0) = \langle -1, 0, 3 \rangle$ We conclude that this tangent line has equation:

Problem 4. (a) Find the intersection of the plane of equation $x - 2y + z = 0$ with the line

$$
\begin{cases}\nx = 3 - t \\
y = 1 + t \\
z = -1 + 2t\n\end{cases}
$$

We first node:
\n
$$
x-2y+z=0
$$

\n $x = 3-t$ \Rightarrow (3-t) -2(1+t)+(-1+2t) = 0
\n $z = -1+2t$

$$
\Rightarrow
$$
 0- \neq =0 \Rightarrow \neq =0.

$$
\begin{array}{c}\n\text{Se,} \\
\begin{array}{c}\n\sqrt{x} = 3 \\
\sqrt{y} = 1 \\
\hline\n\end{array}\n\end{array}
$$

Hence, this line and plane intersect at
the point of coordinates $(3,1,-1)$.

 (20 peints) Problem 4

Find an equation for the intersection of the two planes given by the equations $2x+y-z=1$ and $x + 3y - z = 0$.

These two planes have orthogonal vector
\n
$$
n_1 = \langle 2, 1, -1 \rangle
$$
 and $n_2 = \langle 1, 3, -1 \rangle$.
\nWe have:
\n
$$
\sqrt{\frac{n_1}{n_2} \times n_2} = \frac{n_1}{n_1} \times n_2 = \langle 2, 1, -1 \rangle \times \langle 1, 3, -1 \rangle}
$$
\nWe have:
\n
$$
\sqrt{\frac{n_1}{n_2}} = \langle 2, 1, 5 \rangle
$$
.
\nThis is a nem-zero vector, hence
\nthe two planes are not parallel.
\nThey must intersect along a line diva
\npoint in the intersection.
\nWe have: $\int \frac{2x+y-2=1}{x+3y-z=0}$
\n $\Rightarrow \int \frac{x-2y}{x+3y-z=0} = \int \frac{x=1+2y}{1+5y-z=0}$

 $So = 1, y=0, x=1$ weeks: $(1,0,1)$ is in the intersection. So a parametric equation for this line is:

$$
\begin{cases}\n x = 1 + \lambda t \\
 y = t \\
 z = 1 + 5t.\n\end{cases}
$$

Sanity check:

 $2(1+2t) + t - (1+5t) = 2+5t-1-5t = 1$ $\sqrt{}$ \checkmark $(l+2t) + 3t - (1+5t) = 1-1+5t-5t = 0$ So this line is indeed in both planes!

Problem 5. Let $A(0,0,0)$ and $B(\mathbf{Q}, \mathbf{Q}, 0)$ and S be the sphere of radius 1, centered at A. Find an equation for the set of all points C on the sphere S that maximize the area of the triangle ABC.

 $Se,$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ This is maximal for $\theta = \frac{\pi}{2}$, so when AB and AC are esthogonal. Since AB points in the y-direction, C must be on the xz plane, on top of leing on Y. So, if C has coordinates (x,y,z) $\begin{cases} x^2 + y^2 + z^2 = 1 \\ y = 0 \end{cases}$ then \Rightarrow $\begin{cases} x^2 + z^2 = 1 \\ y = 0 \end{cases}$ this is the circle in the Comment: XZ-plane, contered at A, of radius 1.