- 1. (12 pts) A particle moving along a curve has position vector $\mathbf{r}(t) = \langle t, t^2 + 1, t^2 t \rangle$.
 - (a) Find the time t at which the velocity vector is perpendicular to the acceleration vector.

Velocity:
$$\vec{v}(t) = \vec{r}(t) = \langle 1, 2t, 2t - 1 \rangle$$

ALCelevation: $\vec{a}(t) = \vec{r}'(t) = \langle 0, 2, 2 \rangle$
 $\vec{v} \perp \vec{a} \iff \vec{v}(t) \cdot \vec{a}(t) = 0$
 $\Rightarrow 0 + 4t + 2(2t - 1) = 0$
 $8t - 2 = 0 \Rightarrow t = 4$

(b) Does the curve intersect the line x = t + 1, y = 2t + 3, z = t? (must show work to receive credit.)

Our e:
$$\vec{r}_{1}(t)$$
, | \vec{n}_{2} : $\vec{r}_{2}(s)$, solve $t \& s$ from $\vec{r}_{1}(t) = \vec{r}_{2}(s)$

$$\begin{cases}
0 & t = s+1 \text{ plugin} \\
(3) & t^{2}-t = s
\end{cases}$$

$$\begin{cases}
s^{2}+t^{2} = 2s+3 \Rightarrow (s+1)^{2}+1 = 2s+3 \\
(3) & t^{2}-t^{2} = s
\end{cases}$$

$$\begin{cases}
s^{2}+t^{2} = s \Rightarrow (s+1) \text{ or } s=-1 \\
(3) & t^{2}-t^{2} = s
\end{cases}$$

$$\begin{cases}
s^{2}+t^{2} = s \Rightarrow (s+1) \text{ or } s=-1 \\
(4) & t^{2}+t^{2} = s
\end{cases}$$

$$\begin{cases}
s^{2}+t^{2} = s \Rightarrow (s+1) \text{ or } s=-1 \\
(4) & t^{2}+t^{2} = s
\end{cases}$$

$$\Rightarrow \text{ no solution, not intersecting}$$

$$\begin{cases}
\text{or observe that for } \vec{r}_{1}(t), \quad y-2=(t^{2}+1)-(t^{2}-t)=t+1=x+1 \\
\text{but for } \vec{r}_{2}(s), \quad y-2=2s+3-s=s+3=x+2
\end{cases}$$

$$\Rightarrow \text{ no intersection } pt.$$

the plane
$$x - 2y - z = 1$$
 and the cylinder $y^2 + z^2 = 4$

(a) Find a vector function $\mathbf{r}(t)$ for the curve C. Do not involve any square root function.

$$y^{2}+z^{2}=4 \longrightarrow let \ y=2lost$$

 $z=2 sint$
 $X-2y-z=1 \longrightarrow let \ X=2y+z+1=4 cont+2 sinot+1$
 $T(+)=(4 cont+2 sint+1, 2 cont, 2 sint)$

(b) Find a line that intersects the curve C at the point (3,0,2) and is perpendicular to the curve at this point (i.e., the angle of intersection between the curve and the line at the point is $\pi/2$). The answer is not unique, give a parametric equation for one such line that is not parallel to the x, y, or z-axis.

For
$$F(+)$$
, the $p+(3,0,2)$ is at $t=\frac{\pi}{2}$
 $F'(+)=(-4\pi n t + 2Gnt, -2\pi n t, 2Gnt)$
 $F'(\frac{\pi}{2})=(-4,-2,0)$

The line is I the curve @ 13,0,2) > The line is I the tangent vector $\vec{r}(\vec{z})$

For vector
$$\vec{V} = \langle a_1 b, c \rangle$$
 along the line, $\vec{V} \perp \vec{r}(\vec{\Xi})$

$$(=)$$
 $(a_1b_1c) \cdot (-4,-2,0) = 0$

$$(=)$$
 -4a-2b=0 for example: (at a=1, b=-2, c=1

To make sure the line is not parallel to the woordinate axis we hant at least two of a, b, c be nonzero,

$$X=3+1t$$
 answer not unique $y=0-2t$ $z=2+1t$

3. (7 pts) Find an equation for the surface containing all the points whose distance to the point (0,3,0) is twice its distance to the xz-plane. Simplify the equation and identify it as one of the six standard forms of quadric surfaces.

$$\sqrt{(\chi-0)^{2}+(y-3)^{2}+(2-0)^{2}} = 2(y)$$

$$\chi^{2}+(y-3)^{2}+z^{2}=4y^{2}$$

$$\chi^{2}+2^{2}=4y^{2}-y^{2}+6y-9$$

$$\chi^{2}+2^{2}=3y^{2}+6y-9$$

$$\chi^{2}+2^{2}=3(y^{2}+2y+1-1)-9$$

$$\chi^{2}+3^{2}=3(y+1)^{2}-(2)$$

$$-\chi^{2}+3(y+1)^{2}-2^{2}=12 \Rightarrow h \text{ yperboloid of two sheets}$$

4. (7 pts) Find an equation for the plane that contains the point P(3,7,3) and the line $x-1=\frac{y-3}{2}=2z$.

The line
$$\longrightarrow$$
 $\begin{cases} P+P_{i}(1,3,0) \\ \text{vector } \vec{v} = \langle 1,2,\frac{1}{2} \rangle \end{cases}$

Provinal Vector of the plane $\vec{h} = \vec{v} \times \vec{P_{i}P}$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 4 \\ 2 & 4 & 3 \end{vmatrix} = \langle 4,-2,0 \rangle$$

 \Rightarrow plane: |4(X-3)-2(y-7)+o(z-3)=0

- 5. (12 pts) Given that $\mathbf{a} = \langle 2, 1, 2 \rangle$ and $\text{comp}_{\mathbf{a}} \mathbf{b} = 5$ (i.e., the scalar projection of \mathbf{b} onto \mathbf{a} is 5).
 - (a) Find $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$.

$$proj_{\vec{A}}\vec{b} = (lomp_{\vec{A}}\vec{b})(\frac{\vec{A}}{|\vec{A}|}) = 5 \frac{\langle 2,1,2 \rangle}{|\langle 2,1,2 \rangle|} = \frac{\sqrt{2}}{3}\langle 2,1,2 \rangle$$

(b) Find $\mathbf{a} \cdot \mathbf{b}$.

$$comp_{\vec{a}}\vec{b} = \frac{\vec{R} \cdot \vec{b}}{|\vec{a}|} = 5$$
 $\Rightarrow \vec{a} \cdot \vec{b} = 5 \times 3 = 15$

(c) Find an example of such a vector **b** that is not parallel to **a**. The answer is not unique.

Let
$$\vec{b} = (x, y, z)$$
, $\vec{a} \cdot \vec{b} = (z, 1, 2) \cdot (x, y, z) = 15$
 $\Rightarrow 2x + y + 2z = 15$
For example, if we let $y = 0, z = 0, x = \frac{15}{2}$
 $\Rightarrow \vec{J} = (\frac{15}{2}, 0, 0)$ answer not unique

(d) If you are also given that $|\mathbf{a} \times \mathbf{b}| = 12$, find the angle between \mathbf{a} and \mathbf{b} .

$$\frac{\mathcal{O}}{\mathcal{O}}: \tan \theta = \frac{12}{15} \Rightarrow \tan \theta = \frac{4}{5} \Rightarrow 0 = \tan^{-1}(\frac{4}{5})$$
(Since compab > 0, θ is acuse)

- 6. (12 pts) A particle is moving along the curve in the graph below. At the point P, the velocity vector of the particle is $\mathbf{v} = \langle -3, 4 \rangle$ and it is speeding up at a rate of 15 m/sec². You are also given that the curvature of the curve at the point P is $\kappa = \frac{2}{5}$.
 - (a) On the given graph, sketch the unit tangent vector \mathbf{T} and the unit normal vector \mathbf{N} at the point P. Then explicitly find the vectors \mathbf{T} and \mathbf{N} at the point P.

(b) Find the tangential component a_T and the normal component a_N of the acceleration vector at the point P.

$$A_T = \text{rate of change of speed} = \frac{1}{5} m/s^2$$

$$A_N = (\text{Cumature})(\text{speed})^2 = \frac{2}{5} |V|^2 = \frac{2}{5}(5)^2 = 10$$

(c) Use your answer in the previous parts to find the y-component of the acceleration vector at the point P.

$$\vec{a} = a_{7} + a_{7} = 15 = (-3.4) + 10 = (-4,-3)$$

$$= (-9-8, 12-6) = (-17,6)$$

$$\Rightarrow y - component of \vec{a} is 6$$