1. (14 pts)

(a) Consider the line, L, that goes through the point (0,0,0) and is orthogonal to the plane 2x - 3y + z = 5. Find all (x, y, z) points of intersection of the line L and the surface $x^2 - \frac{7}{2}x + y^2 = 11z^2 + 4.$

INTERSECT:
$$(2t)^2 - \frac{7}{2}(2t) + (-3t)^2 = 11t^2 + 4$$

 $4t^2 - 7t + 9t^2 = 11t^2 + 4$
 $2t^2 - 7t - 4 = 0$
 $(2t+1)(t-4) = 0$
 $t=-\frac{1}{2}$ or $t=4$

$$(x,y,z) = (-1,\frac{3}{2},-\frac{1}{2})$$
 or $(x,y,z) = (8,-12,4)$

(b) Consider the line, L_1 , that is given by the parametric equations x = 13 + 2t, y = 5 - t, z = 3tand the line, L_2 , that goes through the points (0,1,0) and (5,2,1). Find the (x,y,z) point of intersection of these lines, or show why the lines don't intersect.

$$S_6$$
 $(x_{(9,2)} = (15,4,3)$

- 2. (12 points) For all parts below, consider the three points A(2,0,2), B(2,5,1) and C(3,-2,5).
 - (a) Find the angle $\angle BAC$. (Give your answer rounded to the nearest degree)

$$\overrightarrow{AB} = \langle 9, 5, -D \rangle$$
 $\overrightarrow{AC} = \langle 1, -2, 3 \rangle$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}||\overrightarrow{AC}||\cos \theta$
 $0 - 10 - 3 = \sqrt{0 + 25 + 1} \sqrt{1 + 4 + 9} \cos \theta$
 $\cos \theta = \frac{13}{\sqrt{26} \sqrt{19}}$

(b) Find the area of the triangle ABC.

$$\overrightarrow{AB} \times \overrightarrow{AB} = \begin{vmatrix} \overrightarrow{7} & \overrightarrow{7} & \overrightarrow{R} \\ 0 & 5 & -1 \\ 1 & -2 & 3 \end{vmatrix} = (15 - 2)T - (0 - 1)J + (0 - 5)E$$

(c) Find the equation of the plane containing A, B, and C.

$$|3(x-2)-(y-3)-5(z-2)=6$$

$$|3x-26-y-5z+10=6$$

$$|3x-y-5z-16=0$$

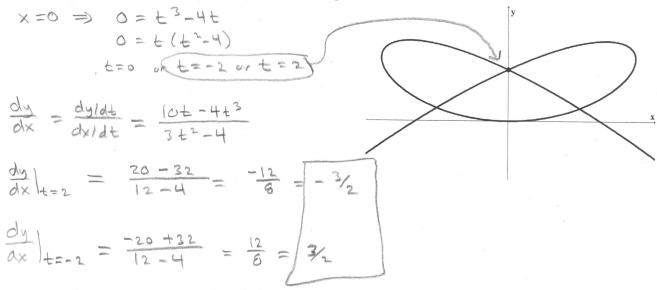
nonzero multiple

3. (14 pts)

(a) Consider the 'pretzel looking' parametric curve given by the equations

$$x = t^3 - 4t, \ y = 5t^2 - t^4.$$

The curve intersects the *positive y*-axis at the same *y*-intercept twice. Find the two different tangent slopes at this point.



(b) Consider the polar curve given by the equation $r = 5 - \sin(\theta^2 - 2\theta)$. The curve has only one positive x-intercept. Find the equation for the tangent line at this positive x-intercept. (Your answer should be in terms of x and y).

$$\theta = 0 \Rightarrow r = 5 - \sin(0) = 5$$
 at $\theta = 0$
 $\frac{dr}{d\theta} = -(2\theta - 2)\cos(\theta^2 - 2\theta) \stackrel{!}{=} -(-2)\cos\theta = 2$
 $\frac{dr}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta \stackrel{!}{=} \frac{(2)(0) + |5|(1)}{(2)(1) - |5|(0)} = \frac{5}{2}$

- 4. (10 points) The motion of a particular fly in three-dimensions is described by the vector position function $\mathbf{r}(t) = \langle \cos(\pi t), t^3 - 1, \sin(\pi t) \rangle$.
 - (a) Eliminate the parameter and give the name of the surface of motion.

$$y = t^{3} - 1 \Rightarrow t = (9+0)^{3}$$

$$\times^{2} + 2^{2} = \cos^{2}(\pi(y+0)^{3}) + \sin^{2}(\pi(y+0)^{3}) = 1$$

(b) Find the equation for the tangent line to the curve at $t=\frac{1}{2}$. And determine the (x,y,z)point of intersection of this tangent line with the xz-plane.

TANGENT
$$LINE: X = -17 + 1$$

$$Y = -\frac{7}{8} + \frac{3}{4} + 1$$

$$Z = [$$

$$x \neq -plane \Rightarrow y = 0 \Rightarrow 0 = -\frac{7}{6} + \frac{7}{4} + \frac{7}{6} = \frac{7}{6} + \frac{7}{6} = \frac{7}{6}$$

$$(x,y,z) = (-\frac{2\pi}{6},0,0)$$