1. (14 pts)

(a) Consider the line, L, that goes through the point (0,0,0) and is orthogonal to the plane
2z -3y + 2z =
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5. Find all (z,y,2) points of intersection of the line L and the surface
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(b) Consider the line, L;, that is given by the parametric equations r = 13+2t, y =5—t, 2 = 3t

and the line, L,, that goes through the points (0, 1,0) and (5,2,1). Find the (z,y, z) point
of intersection of these lines, or show why the lines don’t intersect.
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2. (12 points) For all parts below, consider the three points A(2,0,2), B(2,5,1) and C(3, -2, 5).
(a) Find the angle /ZBAC. (Give your answer rounded to the nearest degree)
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(b) Find the area of the triangle ABC.
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(c) Find the equation of the plane containing A, B, and C.
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3. (14 pts)
(a) Consider the ‘pretzel looking’ parametric curve given by the equations
v=1>—4t, y=>5¢2 —t*

The curve intersects the positive y-axis at the same y-intercept twice.
Find the two different tangent slopes at this point.
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: iteEeept. Find the equation for the tangent line at thls pos1t1ve z- 1ntercept.
(Your answer should be in terms of z and y).
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4. (10 points) The motion of a particular fly in three-dimensions is described by the vector position
function r(t) = (cos(nt), £* — 1, sin(7t)).
(a) Eliminate the parameter and give the name of the surface of motion.
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(b) Find the equation for the tangent line to the curve at ¢t = 1

3+ And determine the (z,y, %)
point of intersection of this tangent line with the zz-plane.
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