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1. (12 points) Evaluate the following integrals. Show your work. Simplify and box your answers.
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2. (14 points) Answer the following two unrelated questions. Show your work and box your answer.

(a) Evaluate the integral: [ln x“+1)dx Inbepateon by Reds:
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(b) The acceleration and the initial velocity of a object moving on a straight line are given by:
a(t)=2t4+6 m/s* and v(0)=—7 m/s
Find the total distance traveled by the particle from t = 0 to ¢ = 2 seconds.
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3. Consider the region enclosed by the graphs y = 9x —x’, y = 2x, x = 0, and x = 2 pictured below.

(a) (4 points) Setup an integral that represents the volume of the solid formed by rotating this region
about the y-axis. (Do not compute the volume).
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(b) (4 points) Set up an integral that represents the volume of the solid formed by rotating this region
about the line y = —5. (Do not compute the volume).
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4. (7 points) The graph below shows the instantaneous velocity v(¢) (in meters per second) of an object
moving along a straight line, as a function of time 7 (in seconds).

Av(t) in m/s

w TN
/ \

. \

\
L1/ \

L \

S&—

S
0 1 2

3 4 5 6

Use Simpsons Rule with n = 6 subintervals to approximate the average velocity v, of the object
from ¢t = 0 to t = 6 seconds.
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5. Let R be the region in the first quadrant which is shown below, and it is described by:

X

4—x2
Note that f(x) = 4" s has a vertical asymptote; use limits for
Va—xs

improper integrals as needed, and determine if they converge or diverge.

(a) (6 points) Compute the area of this region R.
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(b) (7 points) Compute the x-coordinate, ¥, of its centroid (center of mass).
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(¢) (8 points) Recall the region R from the previous page,

X
bounded above by y = Jfor0<x < 2.
SV Er b |

Use limits for improper integrals as needed, and determine
if they converge or diverge.
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6. (8 points) A tank of the shape shown in the picture, with height=7m, length=10m, and width=5m,
is full of water. Water weighs 1000 kg/m?, and the gravitational acceleration is g = 9.8 m/s”.

Set up (do not evaluate) an integral equal to the work required to pump all the water out of the tank
through a spout that is 1 m above the top of the tank.

Specify the meaning of your variable of integration, either in words or on the picture.
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7. (a) (4 points) Write down an integral equal to the arclength L(¢) of the portion of the curve:

yv=¢€", fromx=0tox=t.
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(b) (4 points) At what rate is L(t) increasing when r = 17
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8. (10 points) Find the solution to the differential equation
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that satisfies the initial condition y(1) = €. Give your solution in explicit form, y = f(x).
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9. A 2000 L tank is full of a mixture of water and salt, with 500 grams of salt initial dissolved in the tank.
Fresh water (with NO salt) is pumped into the tank at a rate of 20 L/s. The mixture is kept stirred and
is pumped out at a rate of 40 L/s. (This means the tank is losing volume at a rate of 20 - 40 = -20 L/s).

(a) (1 point) Give the linear function V() = at + b for the volume in liters after ¢ seconds.

\VH)= -20TC +2000

(b) (4 points) Let y(7) be the amount of salt in grams in the tank after t seconds. Write down the
differential equation AND initial condition satisfied by y(r). Do not solve anything yet.

4p >
,0(,1—_—_ O ,4_5_ D(D(Llo) e %’I\/‘%&"C’Aﬁ ’;‘(‘Zﬁ: y;%;o¢_ £ -100.

ot 20t+eo

(c) (6 points) Solve the differential equation to find y(z). Show work. Simplify and box your answer.
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(d) (1 point) How many grams of salt are left in the tank after 60 seconds? Simplify your answer.
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