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When I received my PhD in pure mathematics in 1974, I assumed that nothing I 
did in my professional life would have practical value.  Like a historian of Medieval 
Europe, I would in some small way contribute to human knowledge, but not in a 
way that would affect anyone’s daily life. 
 
A half century ago it was common to think that pure and applied mathematics 
were very different endeavors. At times pure mathematicians would look down 
on applied mathematicians, just as a poet might look down on script writers for 
soap operas. In 1940 the great British number theorist G. H. Hardy wrote about 
his mathematics that its “remoteness from ordinary human activities should keep 
it gentle and clean.” An American mathematician named Halmos even wrote an 
article with the title Applied Mathematics Is Bad Mathematics. 
 
However, even a half century ago there were many examples of pure 
mathematics unexpectedly providing powerful tools to help solve problems of the 
real world. For example, group theory was developed in the early 1800s for the 
purpose of proving that there are no general formulas for solving polynomial 
equations of degree 5 or more. This question was not of interest outside of pure 
mathematics. But in the decades and centuries that followed, group theory – 
which gives a way to study the intricate properties of different kinds of 
symmetries – has been applied to important problems in physics, chemistry, 
cryptography, and even music.  
 

Elliptic Curves 
 
One of the mathematical topics that I had worked with in my PhD dissertation 
was the arithmetic theory of elliptic curves, something which at the time was 
thought not to have any practical applications. To my surprise, about ten years 
later I (and, independently, another number theorist who had been trained in 
pure mathematics) discovered that elliptic curves could be used to improve the 
security of public key cryptography. Public key cryptography was a new branch of 



cryptography that was destined to play a central role in internet security, e-
commerce, cryptocurrencies, COVID-19 contact-tracing, and other applications. 
When I started working on elliptic curve cryptography, I left pure mathematics 
and became an applied mathematician. It was as if someone who thought of 
himself as a poet (whose work few people read) was suddenly in demand to write 
scripts for soap operas (that millions of people would watch on TV). 
 
Nowadays few mathematicians express negative views about applied 
mathematics. The close interaction between pure and applied mathematics is  
well recognized. The winners of the prestigious 2021 Abel Prize – Lásaló Lovász 
and Avi Wigderson – were honored for their work that borders on both pure and 
applied mathematics. According to Lovász, a professor at Eötvös Loránd 
University in Budapest, “Today it’s more and more difficult – and I think it’s a 
good development – to distinguish pure mathematics and applied mathematics.” 
 

No Longer “Gentle and Clean” 
 
The world of pure mathematics, as the word “pure” suggests, has generally been 
pure in the sense of being free from the challenges and ambiguities of working 
with human problems. However, when concepts of pure mathematics get pulled 
into applied areas, problems can arise. Suddenly there are financial and political 
interests at stake. Since mathematics does not model reality perfectly, one needs 
to make assumptions – assumptions that might inadequately reflect the human 
dimensions of the problem or might unintentionally reflect the researchers’ own 
biases and cultural prejudices. 
 
The most obvious danger is “hype”, that is, exaggeration. Because the public 
interest and the amounts of money at stake are much greater for applied 
mathematics than for pure mathematics, it’s common for people working in 
applied fields to vastly overstate their successes. For example, the term Artificial 
Intelligence is misleading. The term was invented in the middle of the last century, 
but even now, with all the technological advances since that time, computers are 
incapable of mimicking key parts of human intelligence. Driverless cars cannot be 
deployed in most environments because the computers that drive them cannot 
be counted on to correctly handle situations that are new and unexpected. This 
limitation has not been removed by so-called “machine learning” (which is also a 
poor word choice, since it is much more primitive than human learning).  



 
Another example of a misleading term is provable security in cryptography, which 
I’ll discuss later. 
 

Quantum Computing 
 
For about the last 20 years huge efforts have been put into developing quantum 
computing. Progress has been very slow, and there are major theoretical and 
practical obstacles to be overcome before anything of practical use can be 
constructed. There’s no assurance that a quantum computer that can solve real-
world problems will ever be constructed, and, if it can be constructed, no one 
knows when that might be. 
 
Quantum computing makes heavy use of the mathematics of Hilbert spaces and 
operators on such spaces. These “spaces” are nothing like the 3-dimensional 
space of our intuition. They are theoretical tools used to analyze quantum 
systems of enormous size.  For a quantum computer that can break RSA 
encryption, the dimension of this theoretical space would be roughly 2 raised to 
the power 4000. (The number of atoms in the Universe is less than 2 raised to the 
power 150.)  
 
The best example of a practical problem that could be solved much faster by a 
quantum computer than by a classical computer is the integer factorization 
problem. The way to do this was discovered by Peter Shor in 1994; his algorithm 
would completely break both RSA and ECC cryptography, which are the two types 
of public key cryptography that are widely deployed. To do this would require a 
quantum computer of great size. One enthusiast for quantum computing 
estimated that one such computer would cost about 1.000.000.000 USD and 
require the energy of a dedicated nuclear power plant. 
 
When we look for other problems of practical importance that could be efficiently 
solved by a quantum computer and not by a classical computer, one obstacle is 
that no one knows how to input large amounts of data – or in fact any data – into 
a quantum computer. In the case of Shor’s algorithm, the only data needed is the 
value of the number that must be factored. The only way known to input that 
value is for a classical computer to rearrange the circuitry of the quantum 
computer in a way that corresponds to the bits of the number.   



 
Despite all these obstacles, the hype about quantum computing has been 
amazing. According to a press release from IBM: “Quantum computers could one 
day provide breakthroughs in many disciplines, including materials and drug 
discovery, the optimization of complex systems, and artificial intelligence.” And 
Microsoft agrees: “Quantum computing takes a giant leap forward…that will 
forever alter our economic, industrial, academic, and societal landscape….  This 
has massive implications for research in healthcare, energy, environmental 
systems, smart materials, and more.” This is pure hype! 
 

“Provable Security” 
 
Besides exaggeration, another problem with the way pure mathematics has been 
brought into computer science is that researchers frequently exaggerate the 
assurances that can be provided by rigorous theorem-proving. The term 
“provable security” in cryptography is misleading, because it is impossible to 
prove that a cryptosystem cannot be breached in any way.  
 
Rather, the theorems that cryptographers prove are much more limited. They are 
conditional theorems, not absolute theorems. They have the form “if P is true, 
then Q is true.” The assumption P has the form the adversary is unable to 
complete a certain computational task (such as factoring a large integer) in a 
reasonable amount of time. The conclusion Q has the form the adversary will not 
be able to breach this cryptosystem in a reasonable amount of time. 
 
Sometimes leading researchers in cryptography fail to appreciate the difference 
between proving a conditional theorem and proving an absolute theorem. For 
example, there is widespread misunderstanding of the concept of a nonuniform 
algorithm.  
 
The usual type of computer algorithm is called a uniform algorithm. In contrast, 
“nonuniform” means that when solving a problem we’re allowed an “advice 
string” that will help us, with no account taken of how long it would take 
someone in practice to find the advice string. Nonuniform algorithms are an 
interesting and important concept in theoretical computer science. But from a 
practical standpoint a nonuniform algorithm is not really an algorithm, because it 
relies on an advice string that no one knows how to find. 



 
This is what two top researchers in cryptography wrote in their notes for a course 
given at MIT: “Clearly, the nonuniform adversary is stronger than the uniform 
one. Thus, to prove that something is secure even in presence of a nonuniform 
adversary is a better result than only proving it is secure in presence of a uniform 
adversary.”  
 
This is wrong. The first sentence is correct – a nonuniform adversary can use an 
advice string, whereas a uniform adversary (the usual kind) cannot. However, the 
theorem does not become stronger. Its conclusion becomes stronger, but its 
assumption also becomes stronger.  If instead of proving “if P, then Q” you prove 
“if R, then S” where R is a stronger assumption than P and S is a stronger 
conclusion than Q, your theorem is not stronger (or weaker) than before. The “if 
P, then Q” theorem is incomparable to the “if R, then S” theorem. That’s basic 
logic. 
 
This misunderstanding led one of the researchers who made this statement to 
make a fundamental error in a paper published in the proceedings of the 2005 
“Crypto” conference (the most prestigious annual cryptography meeting). His 
mistake went undiscovered for seven years. 

 
COVID-19 Contact-Tracing 

 
Perhaps the greatest danger in applications of mathematics to practical problems 
is that the human dimensions of the problems will not get adequate attention. I’ll 
give two examples, both concerning the COVID-19 pandemic. 
 
Researchers have developed several smart phone apps for automated contact-
tracing. Their priority in this research has been to use cryptography to preserve 
privacy, that is, to ensure that no one other than authorized medical people can 
learn who has tested positive or who has been in contact with someone who 
tested positive. 
 
Susan Landau is a leading expert on online privacy, but she has criticized the 
excessive emphasis on privacy protection while more urgent issues of fairness 
have been largely ignored. She has written a book titled People Count: Contact-
Tracing Apps and Public Health, in which she discusses the ways that careless 



implementation of contact-tracing apps could cause much hardship, especially for 
poor people and racial minorities in the United States.  Her main points are: 
 
● “One of the limitations of app-based contact-tracing is that Bluetooth signals 
can travel through walls and floors.” Thus, they would show a contact if someone 
is sitting on the other side of a wall from a COVID-positive person.  This is called a 
false positive. 
 
● In the U.S. it’s mainly low-income people and racial/ethnic minorities who live 
in close quarters in apartment complexes or multi-family houses. 
 
● It’s mainly low-income people and racial/ethnic minorities who work in 
industries where they cannot work from home and are in close contact with 
coworkers (shop clerks, nurses, factory workers, etc.). During the pandemic, 
coworkers are often separated by barriers – but the barriers do not stop 
Bluetooth from giving a false positive. 
 
● Therefore, contact-tracing apps will produce many more false positives for 
those people than for affluent white people. 
 
● A false positive may mean that they have to stop working (and those people are 
living close to the margins even when employed), and in the U.S. that might lead 
to job loss, eviction from their apartment, and huge disruption in their life. 
 
In the U.S. much has been written about the ways in which the COVID-19 
pandemic has disproportionately impacted the poor and racial minorities. 
Landau’s book extends this analysis to automated contact-tracing. 
 

Curve-Fitting for COVID-19 
 
Another case of a faulty response of applied mathematicians to the pandemic 
occurred at my own university, the University of Washington, at its Institute for 
Health Metrics and Evaluation (IHME).  In the crucial early weeks of the pandemic 
– a time when Americans needed to understand the seriousness of the threat and 
respond with strong measures – the IHME became famous nationally because of 
its optimistic projections. The IHME predicted that the total number of U.S. 
deaths during the course of the pandemic would be only 60.000, roughly the 



number of American fatalities during the 2017-18 flu season. In reality, the deaths 
at present exceed 500.000 and are expected to increase to more than ten times 
the IHME estimate. 
 
Why did the IHME do so badly?  Their mathematical model, developed by applied 
mathematicians who had little or no experience in epidemiology, was largely 
based on what’s called “curve-fitting.” They took the curves for infections and 
deaths from Wuhan, China and simply fit them to the U.S. data. They assumed 
that, as in Wuhan between January and March of 2020, the number would rapidly  
increase, then level off, and then rapidly decrease, with most of the deaths 
ending in two or three months. Their methods supposed that Americans would 
respond to the crisis in much the same way as the Chinese. 
 
In retrospect, this was a foolish assumption. The politics and culture of the U.S. 
are very different. At the time we had a President who denied scientific facts and 
opposed mask-wearing. We also lack the discipline of the Chinese; as a New York 
Times reporter commented, “Americans don’t like being told what to do.” 
 
Other mathematical models were more accurate. At about the same time as the 
IHME made its prediction of 60.000 deaths, a group of researchers at Imperial 
College London predicted that U.S. deaths would reach 480.000, a prediction that 
was reported on the front page of the New York Times. But it was the IHME 
prediction that was seized upon by the Trump administration to justify their 
refusal to take the pandemic seriously or to take appropriate measures. 
 

Mathematical Ethics 
 
How did the IHME react to this misuse of their work?  Did they loudly object that 
their prediction would lose all validity if its assumptions were violated, that is, if 
the U.S. responded by delays and refusal to mandate mask-wearing or 
lockdowns? No, they did not object; they simply basked in the glory of being 
constantly cited in White House press conferences. 
 
The medical profession has had ethical guidelines since the time of the ancient 
Greeks. The central principle of those ethics is embodied in the Hippocratic Oath: 
First do no harm.  When mathematicians venture into applications that will affect 



millions of people, they should take a mathematicians’ version of the Hippocratic 
Oath. 


