Construction Portfolio \#4

27. Altitudes

Construct the 3 altitudes and the orthic triangle of triangle PQR . (The orthic triangle is the triangle formed by the feet of the altitudes.)

28. Half Regular Tetrahedron

Construct a net for half a regular tetrahedron. Specifically, this will be the net for a tetrahedron formed by cutting in two a regular tetrahedron with edge length s , cutting along one of its planes of symmetry.

S

29. Square-based Pyramid (corner vertex)

Construct a net for a square-based pyramid ABCDE . The square base ABCD has side length s and the top vertex E is placed so that $A E$ is perpendicular to the plane of $A B C D$, with $\mathrm{AE}=\mathrm{s}$.

S

30. Square-based Pyramid (center vertex)

Construct a net for a square based pyramid ABCDE formed from one square face ABCD of a cube of side s and E, the center of the cube.

S

31. Light Path

Construct a point C on line k so that the path from A to C to B is the shortest possible. Specifically, the sum of lengths AC + CB should be smaller than for any other point C on k . This is the path a beam of light would take from A to B if reflected off a mirror k .

-
 A

B

32. Triangular Billiards

Imagine that XYZ is a triangular billiard table. Construct the path of a billiard ball that is banked first off side XZ and then off side YZ before it reaches B .

33. Triple Line Reflection (parallels)

Let reflection in parallel lines $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$ be M1, M2, M3. Construct a line n so that reflection in n is the same transformation as the composition M3 M2 M1.

34. Triple Line Reflection (concurrent)

Let reflection in concurrent lines $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$ be $\mathrm{M} 1, \mathrm{M} 2$, M3. Construct a line n so that reflection in n is the same transformation as the composition M3 M2 M1.

35. Composition of two point symmetries

Given the points A and B , let H_{A} and H_{B} denote the point reflections with centers A and B. Let S be the composition $\mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{A}}$. Construct points $\mathrm{P}^{\prime}=\mathrm{S}(\mathrm{P})$ and $\mathrm{Q}^{\prime}=\mathrm{S}(\mathrm{Q})$.

0
 A

P
-
B
\circ
Q

36. Barycentric Coordinates

In this triangle, construct the point P with barycentric coordinates $1 / 3,1 / 6,1 / 2$. Also, construct the point Q with barycentric coordiantes $\mathrm{x}, \mathrm{y}, \mathrm{z}$, where the segment EF has length 1.

