Construction Portfolio \#5

37. Center of a Rotation

Construct the center of the rotation that takes triangle ABC to the other triangle (note that this was a problem on Quiz 2 without the information that the isometry is a rotation).

A

38. Center of a Product of Rotations

Given the points A and B below; let S be rotation with center A by 60 degrees and let T be rotation with center B by 180 degrees.
a) Construct the center C of the rotation $\mathrm{U}=\mathrm{ST}$. Write down the angle of rotation.
b) Construct the center D of the rotation $\mathrm{V}=\mathrm{TS}$. Write down the angle of rotation.

A

-

B

39. Glide Reflection as product of 3 Line Reflections

Let $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$ be line reflections in the lines $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$ below. Let $\mathrm{N}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3}$ and let $\mathrm{P}=\mathrm{M}_{3} \mathrm{M}_{2} \mathrm{M}_{1}$
a) Construct the invariant (special) line of the glide reflection N and also a glide vector XY.
b) Construct the invariant (special) line of the glide reflection P and also a glide vector UV. Question to Ponder: How are N and P related?

40. Product of a Rotation and a Line Reflection

Let E be rotation with center A and angle 90 degrees and let M be reflection in line m. Construct the geometric defining data of ME.
\qquad

41. Centers of Dilation

Construct two points P and N so that P is the center of a dilation that takes circle a to circle b with positive ratio and N is the center of a dilation that takes circle a to circle b with negative ratio.

Question to Ponder: The ratio of the radii of a and b is 1.5 . How are the distances among the points $\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{N}$ related? If $\mathrm{AB}=\mathrm{d}$, what are the other distances?

42. Nine-Point Circle and Euler Line

- Construct the Circumcircle of triangle ABC with circumcenter O .
- Construct the Orthocenter H of triangle $A B C$.
- Construct the Centroid G of triangle ABC.
- Construct the Nine-Point Circle of triangle ABC with center B , with the 9 special points indicated.
- Construct the Euler line of triangle ABC .

43. Image of an Isometry

In the figure are given congruent quadrilaterals ABCD and $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$. There is a unique isometry T that takes $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, i.e., $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is $T(A B C D)$, the image of ABCD.

Construct the quadrilateral $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that is $T\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)$, the T image of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

