Given: Quadrilateral ABCD with midpoints M of AB, N of BC, O of CD

and P of AD

To Prove: MNOP is a parallelogram

Proof:

- Draw in diagonals AC and BD and segments MN, NO, OP and PM
- MB = $\frac{1}{2}$ AB, NB = $\frac{1}{2}$ CB and OD = $\frac{1}{2}$ CD, PD = $\frac{1}{2}$ AD by definition of midpoint
- \angle MBN = \angle ABC and \angle ODP = \angle CDA (each the same angles)
- ΔABC ~ ΔMBN and ΔODP ~ ΔCDA by SAS
- \angle ACB = \angle MNB and \angle OPD = \angle CAD by definition of similar
- AC||MN and OP||AC by Theorem 14
- Therefore MN || OP by Corollary 13.b
- $CO = \frac{1}{2}DC$, $CN = \frac{1}{2}BC$ and $AP = \frac{1}{2}AD$, $AM = \frac{1}{2}AB$ by definition of midpoint
- $\angle DAB = \angle PAM$ and $\angle DCB = \angle QCN$ (each the same angles)
- ΔDBA ~ ΔPMA and ΔDCB ~ ΔOCN by SAS
- \angle DBA = \angle PMA and \angle CDB = \angle CON by definition of similar
- PM||DB and DB||ON by Theorem 14
- Therefore PM || ON by Corollary 13.b
- Since MN || OP and PM || ON, MNOP is a parallelogram