Rotations in 3-space: Rotation matrices and rotations of a cube

This project develops the matrix of any rotation in 3 -space, starting with the simplest rotations. Given an axis of rotation and an angle, the goal is to find the 3×3 matrix, which rotates points (and objects) by this angle with this axis.

Prerequisites:

- Dot and cross product.
- Matrix of a linear transformation
- Recall $\mathrm{v} \cdot \mathrm{w}=0$ means v and w are perpendicular (orthogonal).
- (Optional) Make or find a cardboard cube or wooden block, etc., and label the corners with the 8 coordinates $(\pm 1, \pm 1, \pm 1)$.

The Simplest Model case: Rotation around the x_{3}-axis

Visualize the $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ axes in R^{3} with unit vectors $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$ on each axis.

Matrices of rotations around the e_{3} axis

1. Suppose $\mathrm{N}=$ Rotation by 90 degrees around the x_{3}-axis:

Then $N\left(e_{3}\right)=e_{3}, N\left(e_{1}\right)=e_{2}$ and $N\left(e_{2}\right)=-e_{1}$.
What is $A=$ matrix N in this case?
2. Suppose $T=$ Rotation by angle t around the x_{3}-axis.

Then $T\left(e_{3}\right)=e_{3}, T\left(e_{1}\right)=(\cos t) e_{1}+(\sin t) e_{2}$ and $T\left(e_{2}\right)=-(\sin t) e_{1}+(\cos t) e_{2}$.

$$
\text { What is } B=\text { matrix } T \text { in this case? }
$$

[Note: The direction of rotation is chosen so that it appears counter-clockwise when viewed with the eye located on the positive e_{3}-axis looking "down" towards 0 .]

Check using the Cube

- Use N to rotate the cube with corners at the points $(\pm 1, \pm 1, \pm 1)$. This rotation should rotate the cube into itself. Take the rotation matrix A and check that each of the 8 vertices does in fact transform to another one of the vertices.
- Use T to rotate the cube. For what 4 angles t does T rotate the cube into itself?
- Take the rotation matrix B for these choices of t and check that each of the 8 vertices does in fact transform to another one of the vertices.

Analyzing Rotation around the x_{3}-axis using dot and cross product

Define the transformation $\mathrm{P}(\mathrm{v})=\left(\mathrm{e}_{3} \bullet \mathrm{v}\right) \mathrm{e}_{3}$, using the dot product.

- Verify that P is a linear transformation with $\mathrm{P}\left(\mathrm{e}_{3}\right)=\mathrm{e}_{3}$ but $\mathrm{P}\left(\mathrm{e}_{1}\right)=\mathrm{P}\left(\mathrm{e}_{2}\right)=0$.

$$
\text { What is } C=\text { matrix of transformation } P \text { ? }
$$

- Observe that for v on the axis of rotation (= span e_{3}), P agrees with the rotation T but P is zero on the plane of vectors perpendicular to the axis of rotation $\left(=\operatorname{span}\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}\right)$.

Define the transformation $S(v)=e_{3} \times v$, the cross product.

- Verify that S is a linear transformation with $S\left(e_{3}\right)=0$ but $S\left(e_{1}\right)=e_{2}$ and $S\left(e_{2}\right)=-e_{1}$.

$$
\text { What is } D=\text { matrix of transformation } S \text { ? }
$$

- Observe that for v in the plane of vectors perpendicular to the axis of rotation, S agrees with the rotation N but S is zero on the axis of rotation.

Matrix Sum = Rotation Matrix

- Check that $\mathrm{C}+\mathrm{D}=\mathrm{A}$. Does this make sense for v on the axis of rotation and also on the plane of vectors perpendicular to the axis of rotation?
- Check that $S^{2}(v)=0$ when v is on the axis of rotation but $=-v$ for v perpendicular to the axis of rotation.
- What is the matrix E of S^{2} ?
- Check that the transformation $U(v)=P(v)+(\sin t) S(v)-(\cos t) S^{2}(v)$ is the same as T by checking that they are equal on the 3 vectors $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$.
- This means matrix $B=C+(\sin t) D-(\cos t) E$. Check this.

The Rotation Matrix in the General Case

In the general case the same method applies for any axis. Choose a vector f on the axis of rotation. If f does not have length 1 , divide f by its length so that it does have length 1 .
For example, let $\mathrm{f}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}17 \\ -1 \\ 1\end{array}\right]$

Let $P(v)=(f \cdot v) f$ and let $S(v)=f x v$ and $S^{2}(v)=f x(f x v)$.
Write the matrix of P , of S , of S^{2} in this case.

Then let $R_{f}(v)=P(v)+(\sin t) S(v)-(\cos t) S^{2}(v)$. This transformation is the rotation by angle t with axis f. The matrix of R_{f} is the sum of the matrices of P and S.
[Note: The direction of rotation in this formula is chosen so that it appears counterclockwise when viewed with the eye located on the positive f-axis looking "down" towards 0.]

What is matrix $F=$ matrix of R_{f} with angle $t=120$ degrees $=2 \pi / 3$ radians.

Check using the Cube

Use matrix F to rotate the cube with corners at the points ($\pm 1, \pm 1, \pm 1$). This rotation should rotate the cube into itself. Take the rotation matrix of R_{f} and check that each of the 8 vertices does in fact transform to another one of the vertices.

Combining Rotations of the Cube

Use the same method to find the rotation R_{g} by 120 degrees $=2 \pi / 3$ radians but with axis

What is the matrix $G=$ matrix of R_{g} with angle $t=120$ degrees $=2 \pi / 3$ radians?

- Check that matrix G also rotates the cube into itself.

Product GF may provide a surprise

What is matrix $G F=$ matrix of composition of the two previous rotations?

- Check that GF rotates the cube into itself. (This would be a good time to use your cardboard cube to see what is going on.)
- What is the axis of rotation of GF?
- What is the angle of rotation of GF? Do the two angles of F and G add up to the angle of GF?

More Rotations

Choose another axis vector h of length 1 .

$$
\text { What is } H=\text { matrix of } R_{h} \text { with angle } 45 \text { degrees? }
$$

- Check that $\mathrm{H}(\mathrm{h})=\mathrm{h}$. (Why should this be true?)
- Also check that $\mathrm{H}^{4}=-\mathrm{I}$. (Why should this be true?)

Extra - the General Case

Suppose that $\mathrm{u}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is a vector of length 1 , so $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=1$.

- Find the matrix R_{u} for rotation angle $=90$ degrees.
- Find the matrix R_{u} for rotation angle t (i.e., the general formula).

