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1. Cohomology of Compact Lie Groups

First recall that a Lie group is a smooth manifold G that is also a group in the algebraic sense,
with the property that the multiplication map and inversion map are both smooth. In particular,
if we let Lg : G → G denote left multiplication by g, then the space of left-invariant vector fields
(i.e. X ∈ X(M) such that (Lg)∗(X) = X, or equivalently, d(Lg)h(Xh) = Xgh) form a Lie algebra,
which we shall denote by g. Specifically this means that g is a vector space together with a map
[·, ·] : g× g→ g satisfying, for all X,Y, Z ∈ g:

(1) Bilinearity: for a, b ∈ R:

[aX + bY, Z] = a[X,Y ] + b[Y,Z]

[Z, aX + bY ] = a[Z,X] + b[Z, Y ]

(2) Antisymmetry:
[X,Y ] = −[Y,X]

(3) Jacobi Identity
[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

We call this map the Lie bracket of g.

Remark 1. It is worth noting that the evaluation map ε : g→ TeG (where e ∈ G is the identity)
given by ε(X) = Xe, is a natural vector space isomorphism, which will be important later on. See
[4], proposition 8.37, for a proof of this result.

Example 2.

(1) The special orthogonal group of degree n, denoted by SO(n) is the subgroup of GLn(R)
consisting of orthogonal matrices with determinant equal to 1. Its Lie algebra, which we
shall denote by so(n), consists of traceless n× n real matrices.

(2) Similarly, the special unitary group of degree n, denoted by SU(n), consists of unitary
matrices with determinant equal to 1, and its Lie algebra su(n) consists of traceless skew-
Hermitian matrices. It can be shown that SO(3) and SU(2) are not diffeomorphic since
SO(3) is not simply connected but SU(2) is (in fact SU(2) is the universal cover of SO(3)).
However, so(3) and su(2) are isomorphic as Lie algebras, and both are isomorphic to R3

with the cross-product. Recall that if two simply-connected Lie groups have isomorphic Lie
algebras, then the groups must have been isomorphic as well (see theorem 20.21 in [4]).

Now let Ωn(G) denote the space of differential n-forms. We then say a differential form ω ∈ Ω∗(G)
is left-invariant if L∗gω = ω for all g ∈ G (where L∗g is the pullback, more explicitly given by
(L∗gω)h(v) = ωgh(d(Lg)h(v) for v ∈ ThG). We then denote the space of left-invariant n-forms by
ΩnL(G), which, by linearity of L∗g form a subspace of Ωn(G). By properties of pullbacks, L∗gdω =

dL∗gω, and consequently d(Ωn(G)) ⊂ Ωn+1(G). Consequently, we can view

0→ Ω0
L(G)

d→ Ω1
L(G)

d→ Ω2
L(G)

d→ . . .

as a subcomplex of the de Rham complex

0→ Ω0(G)
d→ Ω1(G)

d→ Ω2(G)
d→ . . .

1
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Let us denote the cohomology of the first complex by Hn
L(G) and the second by Hn

dR(G). Since
pullbacks also distribute across wedge products, this implies thatH∗L(G) has a ring structure induced
by the wedge product, just as H∗dR(G) does.

Theorem 3. Suppose G is compact and connected, and let ι : Ω∗L(G)→ Ω∗(G) denote the inclusion
chain map. Then the induced map ι∗ : H∗L(G)→ H∗dR(G) is a ring isomorphism.

Proof. (Sketch) Define a map I : Ωn(G)→ ΩnL(G) by

I(ω) =

∫
G

L∗gωdg,

where dg denotes the normalized Haar measure of G (specifically this means that
∫
G
dg = 1; this

is where compactness is important). Then I is linear and commutes with d and pullbacks. This
immediately implies injectivity of ι∗, for if ι∗[ω] = 0, then ω = dµ for some µ ∈ Ωn−1(G), and
consequently

ω = I(ω) = I(dµ) = d(I(ω)),

and so ω ∈ d(Ωn−1L (G), which implies [ω] = 0.
To show surjectivity, let [ω] ∈ Hn

dR(G) and let 〈·, ·〉 : Hn
dR(G) × Hn(G,R) → R denote the

natural pairing given by integration (see theorem 18.14 in [4]). Then in particular this pairing
is nondegenerate, and so if we can show that 〈[ω − I(ω)], [Z]〉 = 0 for all n-cycles Z (i.e. closed
n-submanifolds), then it will follow that [ω − I(ω)] = 0, and so [ω] = ι∗[I(ω)]. To show this claim,
first note that since G is connected [Z] = [gZ] as homology classes (in particular, Z and gZ differ
by a boundary): Z − gZ = ∂Z ′ for some (n− 1)-cycle Z ′). Thus we compute the following:∫

Z

ω − I(ω) =

∫
Z

ω −
∫
Z

∫
G

L∗gωdg

=

∫
Z

ω −
∫
G

∫
Z

L∗gωdg

=

∫
Z

ω −
∫
G

∫
gZ

ωdg

=

∫
Z

ω −
∫
G

∫
Z

ωdg

=

∫
Z

ω −
(∫

G

dg

)(∫
Z

ω

)
=

∫
Z

ω − 1 ·
∫
Z

ω

= 0.

Thus ι∗ is a ring isomorphism. �

With this result in hand, we can actually take this one step further. In particular, because every
left invariant form is determined by its value at the identity, we are naturally led to the following
result.

Theorem 4. Let δ : (Λng)∗ → (Λn+1g)∗, where (Λng)∗ = HomR(Λng,R) is the space of skew-
symmetric n-linear forms on g, be given by, for α ∈ (Λng)∗ and X1, . . . , Xn+1 ∈ g,

(δα)(X1|e, . . . , Xn+1|e) =
∑
i<j

(−1)i+jα([Xi, Xj ]|e, X1|e, . . . , X̂i|e, . . . , X̂j |e, . . . Xn+1|e).

Then the evaluation map ε : Ω∗L(G)→ (Λ∗g)∗ give by ε(ω) = ωe is both a graded ring isomorphism
and a chain isomorphism between the complex of left invariant forms and the complex

0→ (Λ0g)∗
δ→ (Λ1g)∗

δ→ (Λ3g)∗
δ→ . . .
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Remark 5. Note that (Λ0g)∗ ∼= R and (Λ1g)∗ ∼= g∗.

Proof. (Sketch) First note that, as a restriction map, ε is clearly a ring homomorphism. To see
that ε commutes with the corresponding differentials, and consequently is also a chain map, observe
that if ω ∈ ΩnL(G) and X1, . . . , Xn+1 ∈ g, then

ω(X1, . . . , Xn)(g) = ωg(X1|g, . . . , Xn|g) = (L∗gω)e(X1|e, . . . , Xn|e) = ωe(X1|e, . . . , Xn|e),
which in particular tells us that ω(X1, . . . , Xn) is constant, viewed as a real-valued function on G.
As a result, we have that

ε(dω)(X1|e, . . . , Xn+1|e) = (dω)e(X1|e, . . . , Xn+1|e)
= dω(X1, . . . , Xn+1)(e)

=

n∑
i=1

(−1)iXi(ω(X1, . . . , X̂i, . . . , Xn+1)(e)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . Xn+1)(e)

=

n∑
i=1

(−1)i · 0 +
∑
i<j

(−1)i+jωe([Xi, Xj ]|e, X1|e, . . . , X̂i|e, . . . , X̂j |e, . . . Xn+1|e)

= δ(ε(ω))(X1|e, . . . , Xn+1|e),
and so ε is a chain map. Lastly, it is bijective, for if α ∈ (Λng)∗, then by left invariance there is a
unique ω ∈ ΩnL(G) satisfying ωe = α, given by

ωg(X1|g, . . . , Xn|g) = α((Lg−1)∗(X1|g), . . . , (Lg−1)∗(Xn|g)).
Thus, ε is a graded ring and a chain isomorphism, as claimed. �

Since the two complexes Ω∗L(G) and (Λ∗g)∗ are isomorphic, it immediately follows that their
cohomology rings are as well. Thus, if we denote the cohomology ring of this latter complex by
H∗(g), which we shall call the Lie algebra cohomolofy of g, then, for a compact, connected Lie
group G, have the following sequence of isomorphisms

H∗dR(G) ∼= H∗L(G) ∼= H∗(g).

This then immediately gives us the following result.

Corollary 6. If G1, G2 are compact, connected Lie groups with corresponding Lie algebra’s g1, g2
such that g1 ∼= g2, then H

∗
dR(G1) ∼= H∗dR(G2)

Example 7. Let us again consider the groups SO(3) and SU(2). Since their Lie algebras so(3)
and su(2) are isomorphic, the above corollary tells us that H∗dR(SO(3)) ∼= H∗dR(SU(2)). This in
turn tells us, by the de Rham theorem, that their singular cohomology rings (with real coefficients)
are isomorphic as well: H∗(SO(3),R) ∼= H∗(SU(2),R), and in particular, both are isomorphic to
R[x]/(x2). However, it is important to note that this is not necessarily true if some other coefficient
had been used instead. For example, H2(SO(3),Z) = Z/2, while H2(SU(2),Z) = 0.

2. Lie Algebras Over Arbitrary Rings

Definition 8. Let k be a fixed commutative ring. A nonassociative algebra A is a k-module
equipped with a bilinear product A ⊗k A →. A Lie algebra g is a nonassociative algebra whose
product, written as [x, y] called the Lie Bracket, satisfies for x, y, z ∈ g:

• (Skew-symmetry) [x, x] = 0 (and hence [x, y] = −[y, x])
• (Jacobi’s Identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Definition 9. An ideal of g is a k-submodule h such that [g, h] ⊆ h, that is for all g ∈ g and h ∈ h,
[h, g] ∈ h. The quotient g/h inherits the structure of a Lie algebra.



4 CODY TIPTON & CURTISS LYMAN

Definition 10. There is a natural functor Lie : Associative, k− alg → Lie−Alg, where Lie(A) is
the assocative algebra A with the lie bracket as the commutator.

Definition 11. (The Universal Enveloping Algebra) Let g be a lie algebra. We define Ug as

Ug = T (g)/〈[x, y]− x⊗ y + y ⊗ x〉.

2.1. g-modules.

Definition 12. Let g be a Lie algebra over k. A (left) g-module M is a k-module equpped with a
k-bilinear product g⊗kM →M (written x⊗m→ xm) such that

[x, y]m = x(ym)− y(xm) for all x, y ∈ g and m ∈M

Example 13. (1) Any Lie algebra g is a g-module over its self by the action x.m = [x,m] (the
Jacobi Identity makes sure the above relationsip is satsified).

(2) A trivial g-module is a k-module M on which g acts: xm = 0 for all x ∈ g, and m ∈ M .
For example, we can make k in to a g-module with the trivial action.

Definition 14. A (left) g-module homomorphism f : M → N is a k-module map that is f(xm) =
xf(m), and denote Homg(M,N) to be the set of all g-module homomorphism.

Functors between k-Mod and g-Mod.

Definition 15. • (Trivial g-module functor) Takes k-modules to g-modules with the trivial
action.

• (−)g : g−Mod→ k −Mod is the functor that takes g-module M to

Mg = {m ∈M | xm = 0 ∀x ∈ g}.

This is called the invariant submodule of M . If we treat k as the trivial g-module, then we
have the isomorphism

Homg(k,M)→Mg

ϕ→ ϕ(1)

ϕm ← m

where ϕm(1) = m.
• (−)g : g−Mod→ k −Mod is the functor that takes g-module M to

Mg = M/gM,

and this is called the coinvariants of M .

properties of these functors

Lemma 16. • Mg is the maixmal trivial g=submodule of M , and (−)g is right adjoint to
the trivial g-module and hence left exact.

• Mg is the largest quotient module of M that is trivial and (−)g is left adjoint to the trivial
g-module and therefore right exact functor.

Proof. If there is any g-submodule N of M that is trivial, then gN = 0 and hence N ⊆ Mg.
Furthermore, we have the natural isomorphism

Homk(V,Mg)→ Homg(V,M)

f → ι ◦ f
(g : V →Mg)← (g : V →M, )
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since g(V ) ⊆Mg.
For Mg, we have the natural isomorphism

Homg(M,V )→ Homk(Mg, V )

f → (f : Mg → V )

f ◦ π ← f

where π : M →M/gM is the quotient map and f is the induced map from f , since gM ⊆ ker f . �

Using the Universal envoloping algebra, we can show that the category g − Mod has enough
projectives and injectives.

Theorem 17. Let g be a Lie algebra. The category g−Mod is naturally isomorphic to the category
Ug−Mod.

Proof. The functors Lie(−) : k − alg → Lie − algebras is right adjoint to the functor U(−) :
Lie− algebras→ k − alg, so if M is a k-module and E = Endk(M) then we have

HomLie(g,Lie(E)) ∼= Homk−alg(Ug,Endk(M)).

Using the fact that a g-module is the same as the lie algebra map g→ Lie(E) and a Ug-module is
the same as a k-algebra map Ug→ Endk(M), this proves the result. �

Therefore, we can define the left and right derived functors

Definition 18. Let M be a g-module. We write H∗(g,M) for the left derived functors L∗(−)g(M)
of −g and call them the homology groups of g with coefficients in M .

We write H∗(g,M) for the right derived functors R∗(−g)(M) of −g and call them the cohomology
groups of g with coefficients in M .

Remark 19. If M is a g-module, then M becomes a Ug-module by the action

(x1 ⊗ · · · ⊗ xn) ·m = (x1(x2(· · · (xnm)) · · · ).
We can go the other way as well, by treating a Ug-module M as a g-module just by restricting
to the degree 1 terms, which is just g. So hence, if M and N are g-modules, then we have the
natural isomorphism F : Homg(N,M) → HomUg(N,M) defined as taking f ∈ Homg(N,M) to f
treated as a Ug-module homomorphism. (this is well-defined from the action above). Furthermore,
the inverse map F−1 takes g ∈ HomUg(N,M) to Homg(N,M) by just treating it as a g-module
homomorphism, which is well-defined, since if

g(x1 ⊗ · · · ⊗ xn) ·m) = x1 ⊗ · · · ⊗ xn · g(m),

for xi ∈ g, then it works for when n = 1.

Connecting with Tor and Ext, we have

Theorem 20. Let M be a g-module. Then

H∗(g,M) ∼= TorUg
∗ (k,M)

H∗(g,M) ∼= Ext∗Ug(k,M).

Proof. We have a augmentation map ε : Ug→ k by sending the image of g to zero. So hence, ker ε
is generated by elements in g. Hence we have

k ∼= Ug/ ker ε = Ug/g(Ug) ∼= (Ug)g.

Since all of these functors are universal delta functors, to show they are isomorphic, it suffices
to show (−)g ∼= k ⊗Ug − and HomUg(k,−) ∼= (−)g. So for any g-module M , we have

k ⊗Ug M ∼= (Ug/ ker ε)⊗Ug M ∼= M/ ker εM ∼= M/gM = Mg.
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and we have

HomUg(k,M) ∼= Homg(k,M) ∼= Mg.

(where the last isomorphism came from the natural map T : Homg(k,M)→Mg defined as

T (g) = g(1),

�

2.2. The Chevalley-Eilenberg Complex. For this section, let g be a lie algebra over a field k
(or more generally, g is a free k-module if k is just a commutative ring)

Definition 21. Let Λpg denote the pth-exterior product of the k-module g. Denote Vp(g) =
Ug ⊗k Λpg, which is a free left Ug-module. By convention Λ0g = k, and Λ1g = g, so V0 = Ug
and V1 = Ug ⊗k g. Define the augmentation map ε : V0 = Ug → k defined as sending g to zero,
i.e. ker ε = g ⊕ g⊗2 ⊕ · · · . Also, define d : V1(g) → V0(g) as the product map d(u ⊗ x) = ux.
Furthermore, for p ≥ 2 let d : Vp(g)→ Vp−1(g) as

d(u⊗ x1 ∧ · · · ∧ xn) = θ1 + θ2,

where θ1, θ2 are defined as

θ1 =

p∑
i=1

(−1)i+1ux1 ∧ · · · ∧ x̂i ∧ · · · ∧ xp;

θ2 =
∑
i<j

(−1)i+ju⊗ [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xp.

The complex V•(g) is called the Chevalley-Eilenberg complex.

This complex gives us a projective resolution V•(g)→ k, where we treat k with the trivial action.

Theorem 22. V•(g)→ k is a projective resolution.

Proof. To prove this theorem, we use the PBW theorem on Ug, to construct a bounded below and
exhaustive filtration on the complex V•(g). This uses Koszul complexes as well. �

A consequence of this is the following theorem

Corollary 23. If M is a right g-module, then the homology modules H∗(g,M) are the homology
of the chain complex,

M ⊗Ug V∗(g) = M ⊗Ug Ug⊗k Λ∗g = M ⊗k Λ∗g.

If M is a left g-module, then the cohomology modules H∗(g,M) are the cohomogy of the cochain
complex

Homg(V (g),M) = Homg(Ug⊗ Λ∗g,M) ∼= Homk(Λ∗g,M).
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