Homework 2 for 509, Homological algebra, Spring 2019 due TBD Preliminary version

Problem 1. Let R be a commutative ring, and N be an R-module. Show that the following are equivalent:

- (1) N is flat
- (2) $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for any i > 0 and any *R*-module *M* (3) $\operatorname{Tor}_{1}^{R}(M, N) = 0$ for any *R*-module *M* (4) $\operatorname{Tor}_{1}^{R}(R/I, N) = 0$ for any ideal $I \subset R$.

Problem 2. Let (R, \mathfrak{m}, k) be a commutative Noetherian local ring and M be a finitely generated *R*-module. Prove that the following are equivalent:

- (1) M is free
- (2) M is flat
- (3) The map $\mathfrak{m} \otimes_R M \to R \otimes_R M = M$ induced by the embedding $\mathfrak{m} \subset R$ is injective
- (4) $\operatorname{Tor}_1(k, M) = 0.$

Problem 3. Let R be a Frobenius algebra over a field k. Show that the global dimension of R is either zero or infinity.

Problem 4. Let k be a field of positive characteristic p.

- (1) Show that the group algebra kG for a finite group G is Frobenius (in fact, symmetric).
- (2) Show that the restricted enveloping algebra $\mathfrak{u}(\mathfrak{gl}_n)$ is Frobenius.

Problem 5. Let $\underline{x} = (x_1, x_2, \dots, x_n)$ be a sequence of elements in a commutative ring R, and let $K(\underline{x}) = K(x_1) \otimes \ldots \otimes K(x_n)$ be the corresponding Koszul complex.

- (1) Prove the explicit formula for the differential in $K(\underline{x})$.
- (2) Show that $K(\underline{x})$ is a graded commutative DGA and, moreover, that $K(\underline{x}) \simeq$ $\Lambda^*(V)$ where $V = \bigoplus Rx_i$.