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1 Kummer Theory

An abelian extension L/K with G = Gal(L/K) is said to be of exponent n if σn = 1 for all σ ∈ G. A
Kummer extension is an abelian extension of exponent n where K contains the nth roots of unity.

Example: Let L be the splitting field of x3 − a over Q where a is not a cube, and let K = Q(ζ3). Then
L/K is a Kummer extension of exponent 3.

Let L/K be a Kummer extension of exponent n, and consider the exact sequence

1 µn L× (L×)n 1·n

Taking Galois cohomology we have the long exact sequence

1 µn K× K× ∩ (L×)n H1(G,µn) H1(G,K×) · · ··n

We have H1(G,K×) = 1 by Hilbert’s Theorem 90. Since G acts trivially on µn, we also have that
H1(G,µn) = HomZ(G,µn). Because im(K× −→ K× ∩ (L×)n) = (K×)n, we have an isomorphism

(K× ∩ (L×)n)/(K×)n ' HomZ(G,µn).

Since σn = 1 for all σ ∈ G, the abelian group HomZ(G,µn) is just the Pontryagin dual χ(G) of G. Pontryagin
duality gives us an inclusion reversing isomorphism of subgroup lattices of χ(G) and G. By Galois Theory,
subgroups of G correspond to finite Kummer extensions of K. Thus we have a correspondence between
subgroups of K× ∩ (L×)n containing (K×)n and Kummer extensions of K contained in L.

It can be shown that there exists a maximal Kummer extension N containing all other Kummer extensions
of exponent n. Passing to this maximal extension, we have

(K× ∩ (N×)n)/(K×)n = K×/(K×)n ' χ(G).

Care must be taken because the Galois group G is now an infinite (profinite) group. But it is nevertheless
possible to show the following correspondence:

Theorem 1. There is an inclusion-preserving bijection between subgroups of K× containing (K×)n and
Kummer extensions of K of exponent n. More explicitly, a Kummer extension L/K corresponds to the
subgroup K× ∩ (L×)n ⊂ K×, and a subgroup ∆ ⊂ K× corresponds to the extension K( n

√
∆).

This essentially says that Kummer extensions are obtained by adjoining nth roots of elements in K. This
is known as Kummer Theory.

Note that we have been operating under the (strong) assumption that our base field K contains all the
nth roots of unity. If instead K does not contain all the roots, the situation becomes significantly more
complicated. Describing abelian extensions in general is the task of class field theory.

1



2 Global Class Field Theory

2.1 The Idele Class Group

For each prime p, we have an embedding Q× ↪→ Q×p . We also have an embedding Q× ↪→ R×. This gives an
embedding

Q× ↪→ R××
∏
p

Q×p .

For each x ∈ Q×, there are only finitely many primes dividing the numerator and denominator of x. In
particular, vp(x) = 0 for all but finitely many primes p so xp ∈ Z×p for all but finitely many primes p. Thus,
we obtain an embedding to the restricted product

Q× ↪→ R××
∏̂
p

Z×
p

Q×p .

More generally, for every number field K, we have an embedding

K× ↪→
∏̂
v

O×
v

K×v

where now the restricted product runs over all nontrivial equivalence classes of valuations. There is one
nontrivial equivalence class of valuations for each nonzero prime ideal of the ring of algebraic integers OK .
There is also one nontrivial equivalence class of valuations for each of the finitely many embeddings of K into
R or C. One formuation of Ostrowski’s theorem states that this accounts for all of the nontrivial equivalence
classes of valuations. The restricted product on the right is denoted by IK and is called the idele group of
K. The quotient group CK = IK/K

× is called the idele class group of K.

2.2 Cohomology of the Idele Class Group

If L/K is a finite extension of numbers fields, then we have inclusions

K× ⊆ L×, IK ⊆ IL, CK ⊆ CL.

If L/K is a finite Galois extension of number fields with Galois group G then we have the equalities

(L×)G = K×, IGL = IK , CGL = CK .

In what follows, we will use the notation Hn(L/K) = Hn(Gal(L/K), CL). Our next result states that the
first cohomology group always vanishes. We will demonstrate how abstract cohomological results can be
used to reduce this hard problem to a situation that is more amenable to number-theoretic computation.

Theorem 2. Let L/K be a finite Galois extension of number fields. Then H1(L/K) = 0.

Proof Sketch. Let Gal(L/F ) be a Sylow p-subgroup of Gal(N/K). Recall that the composition

H1(L/K) H1(L/F ) H1(L/K)res cor

is given by multiplication by [F : K] which is injective on the p-primary part of H1(L/K). We reduce to
the case where Gal(L/K) is a p-group. Now let Gal(L/F ) be a normal subgroup of Gal(L/K). We have the
inflation-restriction exact sequence

0 H1(F/K) H1(L/K) H1(L/F ).inf res

2



We reduce to the case where Gal(L/K) is cyclic of order p. We have the inflation restriction exact sequences

0 H1(K(ζp)/K) H1(L(ζp)/K) H1(L(ζp)/K(ζp))
inf res

and
0 H1(L/K) H1(L(ζp)/K) H1(L(ζp)/L).inf res

In particular, it suffices to show that H1(K(ζp)/K) = 0 and H1(L(ζp)/K(ζp)) = 0. We can compute

[K(ζp) : K] = [K ·Q(ζp) : K] = [Q(ζp) : K ∩Q(ζp)] ≤ [Q(ζp) : Q] = p− 1

so H1(K(ζp)/K) = 0 by induction on the degree. Also,

[L(ζp) : K(ζp)] = [L ·K(ζp) : K(ζp)] = [L : L ∩K(ζp)] ≤ [L : K] = p.

If [L(ζp) : K(ζp)] ≤ p− 1 then H1(L(ζp)/K(ζp)) = 0 by induction. We reduce to the case where Gal(L/K)
is cyclic of order p and where K contains the pth roots of unity. At this point, it becomes a technical
computation requiring more number theory.

A similar but more complicated combination of abstract cohomological results and number-theoretic
computation can be used to determine the second cohomology group.

Theorem 3. Let L/K be a finite Galois extension of number fields. Then H2(L/K) is cyclic of order [L : K]
(and these isomorphisms are nicely compatible with inflation and restriction).

2.3 Tate Cohomology

Let G be a finite group and let A be a G-module. Recall that

AG = {a ∈ A : ga = a for all g ∈ G},
AG = A/〈a− ga : a ∈ A, g ∈ G〉.

The element
∑
g∈G g ∈ ZG induces a map NG : AG → AG. The Tate cohomology groups are defined by

Ĥn(G,A) =


Hn(G,A) n ≥ 1

cokerNG n = 0

kerNG n = −1

H−n−1(G,A) n ≤ −2

This seems like a rather ad-hoc way to fuse together homology and cohomology. A more motivated con-
struction of the Tate cohomology groups can be given by starting with a “complete free resolution” which is
a commutative diagram of the form

· · · X−2 X−1 X0 X1 X2 · · ·

Z

0 0

d−2 d−1 d0

ε

d1 d2 d3

µ

such that each Xi is a free G-module and such every term is exact, including the two bends. Then the Tate
cohomology groups are given by

Ĥn(G,A) = Hn(HomZG(X•, A)).

Here are some useful properties of the Tate cohomology groups:
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1. If 0→ A→ B → C → 0 is a short exact sequence of G-modules then we obtain a two-sided long exact
sequence of Tate cohomology groups

· · · Ĥn−1(G,C) Ĥn(G,A) Ĥn(G,B) Ĥn(G,C) Ĥn+1(G,A) · · ·

2. If G is cyclic and if A is a G-module then Ĥn+2(G,A) ∼= Ĥn(G,A) for all integers n.

3. If A and B are G-modules then for all integers m and n, we have a cup product

Ĥm(G,A)⊗ Ĥn(G,B)→ Ĥm+n(G,A⊗B).

4. For m ∈ Z, there is a G-module S such that there are isomorphisms Ĥn(G,A) ∼= Ĥn−m(G,A⊗ S).

The last result is called dimension shifting and is very powerful. For example, if we can prove the second result
for one value of n then we immediately get the second result for all values of n. Also, dimension shifting can
be used to construct the cup product in arbitrary dimensions from the cup product in dimensions m = n = 0.

Theorem 4 (Tate). Let G be a finite group and let A be a G-module such that

1. For every subgroup H of G, Ĥ1(H,A) = 0.

2. For every subgroup H of G, Ĥ2(H,A) is cyclic of order |H|.

If a generates Ĥ2(G,A) then for every integer n, the map

a ∪ − : Ĥn(G,Z)→ Ĥn+2(G,A)

is an isomorphism.

The proof uses dimension shifting. Setting n = −2 gives the isomorphism

AG/NA = cokerNG = Ĥ0(G,A) ∼= Ĥ−2(G,Z) = H1(G,Z) = Gab.

In the case of the idele class group, we obtain an isomorphism

CK/NL/K(CL) ∼= Gal(L/K)ab.

Notice what happened here: We proved hard results about the group cohomology H1(G,CL) and H2(G,CL)
and used dimension shifting in Tate cohomology to get a deep interpretation of the group homology H1(G,Z).

Corollary 5. Let K be a number field. There is an inclusion reversing isomorphism between abelian exten-
sions of K and norm subgroups of CK .

It turns out that the norm subgroups of CK are precisely the closed subgroups of CK of finite index.

4


