- 1. Basic intro to singular chain complexes, compute homology of a point.
 - (a) Basic understanding of simplices, give definition.

Definition. Δ_n , the n-simplex, is defined as

$$\{(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}:\sum x_i=1,x_i\geq 0\}.$$

Definition. The ith face map is a map

$$F_i: \Delta_n \to \Delta_{n+1},$$

given by adding in a zero in any possible position.

From these, we get a complex $S_*(X)$, the singular complex of X. It's objects are

$$S_n(X) := \mathbb{Z}[\operatorname{Hom}(\Delta_n, X)]$$

which we call the n-chains in X.

Draw pictures

Each F_i induces a map F_i^* : Hom $(\Delta_{n+1}, X) \to$ Hom (Δ_n, X) . Collecting these together gives a map

$$\partial_{n+1} : S_{n+1}(X) \to S_n(X)$$

 $\partial_{n+1} = \sum_{i=0}^{n+1} F_i^*$

Called the **boundary map**

An easy computation yields that this is a complex, $S_*(X)$. It's homology groups are $H_*(X)$ are topological and homotopy invariants, the homology of X.

(b) Compute homology of a point. Let $\sigma_n : \Delta^n \to *$ be the unique map. Let f_i be the inclusion of the *i*th face. Then

$$S_n(X) \cong \mathbb{Z}$$

with σ_n as basis. We compute

$$\partial_n(\sigma_n) = \sum_{i=0}^n (-1)^i \sigma_n \circ f_i = \sum_{i=0}^n (-1)^i \sigma_{n-1} = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \sigma_{n-1} & \text{if } n \text{ is even} \end{cases}$$

So the singular complex is

 $\ldots \longrightarrow \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \longrightarrow 0$

With homologies

 \dots 0 0 0 \mathbb{Z}

- 2. Basic covering space stuff
 - (a) Define a covering map/space.

Definition. Let $\varphi : E \to X$ be a continuous map. Then we say φ is a covering map if every point $p \in X$ has an evenly covered neighborhood U.

This means that $\varphi^{-1}(U) = \prod_{\alpha \in A} U_{\alpha}$ where $\varphi : U_{\alpha} \to U$ is a homeomorphism.

Draw pictures.

- (b) Define classifying space, show BG is Eilenberg-Maclane (long exact sequence in homotopy)
- (c) Define a (proper) group action on a space.

Definition. A group action of G on a space X is a homomorphism

 $\rho: G \to \{\text{Homeomorphisms} \ X \to X\}$

Definition. An action ρ is called **proper** if The resulting quotient

 $X \to X/G$

is a covering map.

3. Prove that if G acts on X, then G acts on $S_*(X)$, with

 $S_*(X)_G \cong S_*(X/G)$

 $(Lemma \ 6.10.2)$

Proof. We have an obvious map $S_n(X) \xrightarrow{\pi_*} S_n(X/G)$ given by composition with $X \xrightarrow{\pi} X/g$. Suppose we have $\sigma : \Delta_n \to X$ and $g \in G$. Then TFDC

Thus, π_* descends to the quotient $S_*(X)_G \to S_*(X/G)$. The unique lifting property of covering maps yields that this is an isomorphism.

Definition. Let G be a group. Suppose we have a contractible space EG on which G acts properly. Then the quotient space X/G =: BG is called a **Classifying space** for G. '

4.

Theorem 1. Let BG be a classifying space for G. Then the (co)homology of BG is naturally isomorphic to the (co)homology of G.

- 5. Examples:
 - (a) \mathbb{S}^1 as a classifying space for \mathbb{R} .
 - (b) \mathbb{RP}^{∞} as classifying space for $\mathbb{Z}/2$
 - (c) $B\mathbb{Z}/n$ gives finitely generated abelian groups.