Representation Theory Prelim Problems

2018, 7. Let G be a finite group and π , π' be two irreducible representations of G. Prove or disprove the following assertion: π and π' are equivalent if and only if det $\pi(g) = \det \pi'(g)$ for all $g \in G$.

2017, 2. Show that a finite simple group cannot have a 2-dimensional irreducible representation over \mathbb{C} . (Hint: the determinant might prove useful.)

2015, **7**. Let G be a non-abelian group of order p^3 with p a prime.

- (a) Determine the order of the center Z of G.
- (b) Determine the number of inequivalent complex 1-dimensional representations of G.
- (c) Compute the dimensions of all the inequivalent irreducible representations of G and verify that the number of such representations equals the number of conjugacy classes of G.

2014, **7**. Let C_p denote the cyclic group of order p.

- (a) Show that C_p has two irreducible representations over \mathbb{Q} (up to isomorphism), one of dimension 1 and one of dimension p-1.
- (b) Let G be a finite group, and let $\rho : G \to \operatorname{GL}_n(\mathbb{Q})$ be a representation of G over \mathbb{Q} . Let $\rho_{\mathbb{C}} : G \to \operatorname{GL}_n(\mathbb{C})$ denote ρ followed by the inclusion $\operatorname{GL}_n(\mathbb{Q}) \to \operatorname{GL}_n(\mathbb{C})$. Thus $\rho_{\mathbb{C}}$ is a representation of G over \mathbb{C} , called the *complexification* of ρ . We say that an irreducible representation ρ of G is *absolutely irreducible* if its complexification remains irreducible over \mathbb{C} .

Now suppose G is abelian and that every representation of G over \mathbb{Q} is absolutely irreducible. Show that $G \cong (C_2)^k$ for some k (i.e., is a product of cyclic groups of order 2). **2014, 8.** Let G be a finite group and $\mathbb{Z}[G]$ the internal group algebra. Let \mathcal{Z} be the center of $\mathbb{Z}[G]$. For each conjugacy class $C \subseteq G$, let $P_C = \sum_{g \in C} g$.

- (a) Show that the elements P_C form a \mathbb{Z} -basis for \mathcal{Z} . Hence $\mathcal{Z} \cong \mathbb{Z}^d$ as an abelian group, where d is the number of conjugacy classes in G.
- (b) Show that if a ring R is isomorphic to \mathbb{Z}^d as an abelian group, then every element in R satisfies a monic integral polynomial. (**Hint:** Let $\{v_1, \ldots, v_d\}$ be a basis of R and for a fixed non-zero $r \in R$, write $rv_i = \sum_j a_{ij}v_j$. Use the Hamilton-Cayley theorem.)
- (c) Let $\pi : G \to \operatorname{GL}(V)$ be an irreducible representation of G (over \mathbb{C}). Show that $\pi(P_C)$ acts on V as multiplication by the scalar

$$\frac{|C|\chi_{\pi}(C)}{\dim V},$$

where $\chi_{\pi}(C)$ is the value of the character χ_{π} on any element of C.

(d) Conclude that $|C|\chi_{\pi}(C)/\dim V$ is an algebraic integer.

2011, 6. Given a finite group G, recall that its *regular representation* is the representation on the complex group algebra $\mathbb{C}[G]$ induced by left multiplication of G on itself and its *adjoint* representation is the representation on the complex group algebra $\mathbb{C}[G]$ induced by conjugation of G on itself.

- (a) Let $G = GL_2(\mathbb{F}_2)$. Describe the number and dimensions of the irreducible representations of G. Then describe the decomposition of its regular representation as a direct sum of irreducible representations.
- (b) Let G be a group of order 12. Show that its adjoint representation is reducible; that is, there is an H-invariant subspace of $\mathbb{C}[H]$ besides 0 and $\mathbb{C}[H]$.

2010, 3. Let \mathbb{F} be a field of characteristic p, and G a group of order p^n . Let $R = \mathbb{F}[G]$ be the group ring (group algebra) of G over \mathbb{F} , and let $u := \sum_{x \in G} x$ (so u is an element of R).

- (a) Prove that u lies in the center of R.
- (b) Verify that Ru is a 2-sided ideal of R.
- (c) Show there exists a positive integer k such that $u^k = 0$. Conclude that for such a k, $(Ru)^k = 0$.
- (d) Show that *R* is **not** a semi-simple ring. (**Warning:** Please use the definition of a semi-simple ring: do **not** use the result that a finite length ring fails to be semisimple if and only if it has a non-zero nilpotent ideal.)

2010, 8. Let G be the unique non-abelian group of order 21.

- (a) Describe all 1-dimensional complex representations of G.
- (b) How many (non-isomorphic) irreducible complex representations does G have and what are their dimensions?
- (c) Determine the character table of G.

2009, 7. Let G be a finite group, k an algebraically closed field, and V an irreducible k-linear representation of G.

- (a) Show that $\operatorname{Hom}_{kG}(V, V)$ is a division algebra with k in its center.
- (b) Show that V is finite-dimensional over k, and conclude that $\operatorname{Hom}_{kG}(V, V)$ is also finite dimensional.
- (c) Show the inclusion $k \hookrightarrow \operatorname{Hom}_{kG}(V, V)$ found in (a) is an isomorphism. (For $f \in \operatorname{Hom}_{kG}(V, V)$, view f as a linear transformation and consider $f \alpha I$, where α is an eigenvalue of f).

2008, 7.

- (a) Let G be a group of (finite) order n. Show that any irreducible left module over the group algebra $\mathbb{C}G$ has complex dimension at least \sqrt{n} .
- (b) Give an example of a group G of order $n \ge 5$ and an irreducible left module over $\mathbb{C}G$ of complex dimension $\lfloor \sqrt{n} \rfloor$, the greatest integer to \sqrt{n} .

2006, 4. Let K/F be a finite Galois extension and let n = [K : F]. There is a theorem (often referred to as the "normal basis theorem") which states that there exists an irreducible polynomial $f(x) \in F[x]$ whose roots form a basis for K as a vector space over F. You may assume that theorem in this problem.

- (a) Let G = Gal(K/F). The action of G on K makes K into a finite-dimensional representation space for G over F. Prove that K is isomorphic to the regular representation for G over F. (The regular representation is defined by letting G act on the group algebra F[G] by multiplication on the left.)
- (b) Suppose that the Galois group G is cyclic and that F contains a primitive n^{th} root of unity. Show that there exists an injective homomorphism $\chi: G \to F^{\times}$.
- (c) Show that K contains a non-zero element a with the following property:

$$g(a) = \chi(g) \cdot a$$

for all $g \in G$.

(d) If a has the property stated in (c), show that K = F(a) and that $a^n \in F^{\times}$.