Homework 8 for 506, Spring 2019
due Friday, June 7
Throughout this homework, A is a commutative ring with identity.
Problem 1. Let M be an A-module. Prove that the following are equivalent.
(1) $M \cong 0$
(2) $M_{\mathfrak{p}} \cong 0$ for any prime ideal \mathfrak{p} of A
(3) $M_{\mathfrak{m}} \cong 0$ for any maximal ideal \mathfrak{m} of A

Problem 2. Snake lemma. Assume that in the following commutative diagram of A-modules, the rows are exact:

Show that there is an exact sequence:
Ker $f \longrightarrow$ Ker $g \longrightarrow$ Ker $h \longrightarrow$ Coker $f \longrightarrow$ Coker $g \longrightarrow$ Coker h
Problem 3. Show that the following are equivalent:
(1) P is a projective A-module (as defined in HW 7 for 505 . Feel free to use problem 5 from that homework);
(2) Any surjective A-module homomorphism $M \rightarrow P$ splits;
(3) $\operatorname{Hom}_{A}(P,-)$ is an exact functor.

Problem 4. Let I be an A-module. Prove that the following are equivalent:
(1) For any injective homomorphism $i: M^{\prime} \rightarrow M$ and any homomorphism $g: M^{\prime} \rightarrow I$ there exists $h: M \rightarrow I$ such that the following diagram commutes:

(2) The functor $\operatorname{Hom}_{A}(-, I): \underline{\underline{A-\bmod }} \rightarrow \underline{\underline{A-\bmod } \text { is exact }}$
(3) Any exact sequence $0 \rightarrow I \overline{\overline{\rightarrow M \rightarrow}} M^{\prime \prime} \overline{\bar{\prime} \rightarrow 0 \text { splits }}$

Hint: to prove 3) implies 1), take any diagram as in 1) and consider the module

$$
I \oplus_{M^{\prime}} M \stackrel{\text { def }}{=} \frac{I \oplus M}{\left\{\left(g\left(m^{\prime}\right),-i\left(m^{\prime}\right)\right) \mid m^{\prime} \in M^{\prime}\right\}}
$$

which is the push-out of the diagram (1):

Show that the bottom horizontal map (induced by i) is injective; then apply 3) to that map.

Definition. A module satisfying one of these conditions is called injective.

In the next problem we shall describe injective modules over \mathbb{Z}. Note that this is a bit more involved than describing projective modules which are just \mathbb{Z}^{n}.

Problem 5.

I. Prove the Baer's criterion for injective modules: An A-module I is injective if and only if for any ideal $\mathfrak{a} \subset A$ and any map $f: \mathfrak{a} \rightarrow I$, the map f can be extended to $h: A \rightarrow I$:

II. Show that an abelian group is injective (as a \mathbb{Z}-module) if an only if it is divisible. (An abelian group A is divisible if for any $a \in A$, and any $n \in \mathbb{Z}$ there exists $b \in A$ such that $a=n b$. For example, \mathbb{Q} or \mathbb{Q} / \mathbb{Z} are divisible.)

