WORKSHEET ON ARTINIAN RINGS

DUE WEDNESDAY, MAY 15TH

All rings are commutative with 1 unless specified otherwise. This worksheet pursues two main results on Artinian rings:

- (1) An Artinian ring is a Noetherian ring of dimension 0 (Thm 9).
- (2) Structure theorem for Artinian rings (Thm 12)

Definition 1. An ideal I is nilpotent if $I^n = \langle x_1 \cdots x_n | x_i \in I \rangle = (0)$ for some $n \in \mathbb{Z}$.

Lemma 2. Let R be a commutative Artinian ring. Show that J(R) is a nilpotent ideal.

Proof. Refer to Homework 2, problem 4.

 Theorem 3 (Hopkins-Levitzki theorem). (1) Let R be an Artinian ring, and M be a finitely generated R-module. Prove that M is a Noetherian R-module. (2) Conclude that an Artinian ring is Noetherian.
10 pts. Feel free to cut and paste your proof from Homework 2 if you'd done it then. $\hfill \Box$
Lemma 4. Let R be an Artinian integral domain. Then R is a field.
5pts.
Proposition 5. Let R be an Artinian ring. Then any prime ideal is maximal.
5pts.
Corollary 6. Let R be an Artinian ring. Then the Krull dimension of R is zero.
1pt.
Proposition 7. Let R be a Noetherian ring. Then $\mathfrak{N}(R)$ is a nilpotent ideal.
5pts.
Lemma 8. Let $\mathfrak{p}_1, \mathfrak{p}_2$ be prime ideals in R which are also relatively prime. Then $\mathfrak{p}_1^n, \mathfrak{p}_2^m$ are relatively prime for any $n, m > 0$.
5pts. (use properties of radicals from Homework 3) $\hfill \square$
Theorem 9. A ring R is Artinian if and only if it is Noetherian of Krull dimension 0.
10pts.
Corollary 10. Let R be a Noetherian local ring with a maximal ideal \mathfrak{m} . Then one of the following holds:
(•) either $\mathfrak{m}^n \neq \mathfrak{m}^{n+1}$ for any $n > 0$ (•) or there exists n such that $\mathfrak{m}^n = 0$. In the latter case, R is Artinian.
10 pts.

DUE WEDNESDAY, MAY 15TH

In other words, a local Noetherian ring is Artinian if and only if the unique maximal ideal is nilpotent.

Lemma 11. Let R_1, R_2 be Artinian rings. Then $R_1 \times R_2$ is also Artinian.

5 pts.

Theorem 12. Any Artinian ring is isomorphic to a direct product of finitely many local Artinian rings. Moreover, the factors in such a decomposition are unique up to isomorphism and reordering.

10pts.

Remark 13. For an Artinian ring R, Spec R is just a union of finitely many points. Zariski topology becomes a discrete topology. Spec R is irreducible if and only if R is local.