Homework 4 for 506, Spring 2019 due Wednesday, May 8 Preliminary version

Problem 1.

(1). Show that Spec R is irreducible if and only if the nilradical \mathfrak{N} is prime.

(2). Show that if R is a Noetherian ring, then Spec R is a Noetherian topological space.

<u>Note</u>: the converse is NOT true. It is possible to construct a local ring such that the maximal ideal is also a unique prime ideal, but containing an infinite ascending chain of ideals. The following, though, does hold: If Spec R is Noetherian, then the set of prime ideals of R satisfies the a.c.c.

Problem 2. Let $X = \operatorname{Spec} R$. Show that the principal open set X_f is quasicompact. (There is a hint in [AM], Ch. I, Ex. 17.)

Problem 3.

- (1) Let $x \in \operatorname{Spec} R$ be a point corresponding to the prime ideal \mathfrak{p} . Show that the closure of x in Zariski topology equals $V(\mathfrak{p})$.
- (2) Show that the point $x \in \operatorname{Spec} R$ corresponding to the prime ideal \mathfrak{p} is closed if and only if \mathfrak{p} is a maximal ideal
- (3) Show that if \mathfrak{p} is a prime ideal then $V(\mathfrak{p})$ is irreducible.