due Wednesday, May 1

Defn. A prime ideal $\mathfrak{p} \in R$ is minimal if it does not contain any proper prime ideals.

Example. If R is an integral domain then the ONLY minimal prime is 0-ideal.
Problem 1. Let R be a Noetherian ring. Show that there is one-to-one correspondence between irreducible components of $\operatorname{Spec} R$ and minimal prime ideals of R.
Note that this trivially implies that a Noetherian ring has finitely many minimal prime ideals.

Problem 2. Describe Spec R for
(1) $R=\mathbb{R}[x] /\left(x^{n}\right)$ for some $n>0$
(2) $R=\mathbb{Z}[x]$ (here, just describe the points of this space)

Creative pictures are appreciated!
Problem 3. Show that for a topological space X to be irreducible is equivalent to any of the following
(1) Any non-empty open subset is dense;
(2) Any two non-empty open subsets have a non-empty intersection.

Problem 4. Let X be a topological space. Prove the following:
(1) If $Y \subset X$ is irreducible, then \bar{Y} is irreducible;
(2) Any irreducible subset is contained in a maximal irreducible subset.

Exercises from class

Exercise 1: Radicals [10pts]. Prove the following:
(1) $\operatorname{rad}(\operatorname{rad}(\mathfrak{a}))=\operatorname{rad}(\mathfrak{a})$
(2) $\operatorname{rad}(\mathfrak{a b})=\operatorname{rad}(\mathfrak{a} \cap \mathfrak{b})=\operatorname{rad}(\mathfrak{a}) \cap \operatorname{rad}(\mathfrak{b})$
(3) $\operatorname{rad}(\mathfrak{a})=(1) \Leftrightarrow \mathfrak{a}=$ (1)
(4) $\operatorname{rad}(\mathfrak{a}+\mathfrak{b})=\operatorname{rad}(\operatorname{rad}(\mathfrak{a})+\operatorname{rad}(\mathfrak{b}))$
(5) $\operatorname{rad}\left(\mathfrak{p}^{n}\right)=\mathfrak{p}$

