MATH 506

Final exam

due June 12, 2019, by 10:30am

NAME:

SIGNATURE:

Instructions: You may use class notes as well as homework and refer to anything proved or stated in class: make it clear which fact/theorem you are using. No other sources are allowed.

There are 6 problems on the test. You only need to solve 5 to get 100%. No partial credit will be given on the 6th problem. Please indicate very clearly which 5 problems you wish to be graded.

If any questions arise feel free to send Julia na e-mail. In particular, if you are unsure whether using a particular result is ok, ask!

Problem	Points	Credit
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	≤ 50	

All rings are commutative with identity.

Problem 1. Write down the character table for S_4 and justify it.

Problem 2. Let R be a local ring, and M, N be finitely generated R-modules. Show that if $M \otimes N = 0$ then M = 0 or N = 0.

Problem 3. Let p be a prime, and let $\mathbb{Z}_{(p)}$ be the localization at the prime ideal (p). Describe the following topological spaces (points, irreducible components and dimension):

- (1) Spec $\mathbb{Z}_{(p)}$, (2) Spec $\mathbb{Z}_{(p)}[x]$.

Problem 4. Let A be an integral domain and M be an A-module. We say that M is *torsion-free* if for any $a \in A$, $m \in M$, am = 0 implies a = 0 or m = 0.

Show that being *torsion-free* is a local property. That is, the following are equivalent:

- (1) M is torsion-free.
- (2) The $A_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ is torsion-free for any prime ideal \mathfrak{p} of A.
- (3) The $A_{\mathfrak{m}}$ -module $M_{\mathfrak{m}}$ is torsion-free for any maximal ideal \mathfrak{m} of A.

Problem 5. Let k be a field, and let $f, g \in k[x, y]$ be irreducible elements which do not divide each other. Show that V((f, g)) is a finite set. You may use that the Krull dimension of k[x, y] is 2. **Problem 6.** Let k be a field (you may assume that k is infinite), and let R be a finitely generated k-algebra. Prove that R is an Artinian ring if and only if R is a finite k-algebra.

Hint for the only if direction: First, prove it for a local ring R with maximal ideal \mathfrak{m} . This can be done in two steps: show that R/\mathfrak{m} is finite; then show that in a descending chain of ideals $\mathfrak{m} \supset \mathfrak{m}^2 \supset \ldots$ each quotient is finite.