Enumerative Geometry
and the Shapiro–Shapiro Conjecture

Jake Levinson
University of Washington

Simon Fraser University
November 20, 2019
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines?
2. How many lines lie on a smooth cubic surface?
3. How many rational cubic curves meet 12 lines?
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines?
2. How many lines lie on a smooth cubic surface?
3. How many rational cubic curves meet 12 lines?
Enumerative geometry

Some questions about 3D geometry:

1. How many \textbf{lines} meet \textbf{four general lines}? 2.
2. How many \textbf{lines} lie on a \textbf{smooth cubic surface}?
3. How many \textbf{rational cubic curves} meet \textbf{12 lines}?
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines? 2.
2. How many lines lie on a smooth cubic surface?
3. How many rational cubic curves meet 12 lines?
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines? 2.
2. How many lines lie on a smooth cubic surface? 27.
3. How many rational cubic curves meet 12 lines?

(Credit: Greg Egan)
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines? 2.
2. How many lines lie on a smooth cubic surface? 27.
3. How many rational cubic curves meet 12 lines?
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines? 2.
2. How many lines lie on a smooth cubic surface? 27.
3. How many rational cubic curves meet 12 lines? 80160.
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines? 2.
2. How many lines lie on a smooth cubic surface? 27.
3. How many rational cubic curves meet 12 lines? 80160.

Prettier than 80160 twisted cubics.
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines? 2.
2. How many lines lie on a smooth cubic surface? 27.
3. How many rational cubic curves meet 12 lines? 80160.
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines? 2.
2. How many lines lie on a smooth cubic surface? 27.
3. How many rational cubic curves meet 12 lines? 80160.

To answer these questions, we study moduli spaces:

- The space of lines $Gr(2, n)$
- The space of curves \mathcal{M}_g
- The space of maps of curves $\mathcal{M}_{0,n}(\mathbb{P}^3, 3)$
Enumerative geometry

Some questions about 3D geometry:

1. How many lines meet four general lines? 2.
2. How many lines lie on a smooth cubic surface? 27.
3. How many rational cubic curves meet 12 lines? 80160.

To answer these questions, we study moduli spaces:

- The space of lines $Gr(2, n)$
- The space of curves M_g
- The space of maps of curves $M_{0,n}(\mathbb{P}^3, 3)$

Hilbert’s 15th Problem (1900): “To establish rigorously ... the enumerative calculus developed by [Schubert].”

Mumford (1983): “We take as a model for [enumeration on M_g] the enumerative geometry of the Grassmannians.”
Modern questions also go beyond enumeration

- Euler characteristic, genus, ... for positive-dimensional solution spaces

- Explicit topology of moduli spaces (e.g. as CW-complexes)

- Deforming solutions
Modern questions also go beyond enumeration

- Euler characteristic, genus, ... for positive-dimensional solution spaces

- Explicit topology of moduli spaces (e.g. as CW-complexes)

- Deforming solutions

Goal of today

Pass from **counting** to **describing topology**.
Part 1. Counting
Counting lines and planes

How many lines meet four general lines?

Schubert calculus says: 2 solutions – enumerated by the set \{1234, 1324\}.

Caveat: in general, over \mathbb{C} (in \mathbb{C}P^3, with multiplicity,...).
Counting lines and planes

How many lines meet four general lines?

Schubert calculus says: 2 solutions – enumerated by the set

\[
\left\{ \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array} \right\}, \quad \left\{ \begin{array}{cc}
1 & 3 \\
2 & 4
\end{array} \right\}.
\]

Caveat: in general, over \mathbb{C} (in \mathbb{CP}^3, with multiplicity, ...).
Schubert problems, \(k \)-planes, flags

The **Grassmannian** is the space of planes:

\[
Gr(k, n) = \{ \text{vector subspaces } S \subset \mathbb{C}^n : \dim(S) = k \}.
\]
Schubert problems, k-planes, flags

The **Grassmannian** is the space of planes:

$$Gr(k, n) = \{ \text{vector subspaces } S \subset \mathbb{C}^n : \dim(S) = k \}.$$

Simplest (codimension 1) **“Schubert problem”** for planes:

$$X^\Box(F_{n-k}) = \{ S \in Gr(k, n) : S \cap F_{n-k} \neq 0 \}.$$

In \mathbb{P}^3: Lines meeting a given line.
Schubert problems, k-planes, flags

The **Grassmannian** is the space of planes:

$$Gr(k, n) = \{ \text{vector subspaces } S \subset \mathbb{C}^n : \dim(S) = k \}.$$

Simplest (codimension 1) “**Schubert problem**” for planes:

$$X^\square(F_{n-k}) = \{ S \in Gr(k, n) : S \cap F_{n-k} \neq 0 \}.$$

In \mathbb{P}^3: Lines meeting a given line.

Theorem. For *general* choices of complementary planes $F^{(i)}$,

$$Z_{k,n} := X^\square(F^{(1)}_{n-k}) \cap \cdots \cap X^\square(F^{(k(n-k))}_{n-k}) \text{ is finite}$$
Schubert problems, k-planes, flags

The **Grassmannian** is the space of planes:

\[Gr(k, n) = \{ \text{vector subspaces } S \subset \mathbb{C}^n : \dim(S) = k \}. \]

Simplest (codimension 1) **"Schubert problem"** for planes:

\[X^\square(F_{n-k}) = \{ S \in Gr(k, n) : S \cap F_{n-k} \neq 0 \}. \]

In \mathbb{P}^3: Lines meeting a given line.

Theorem. For general choices of complementary planes $F^{(i)}$,

\[Z_{k,n} := X^\square(F^{(1)}_{n-k}) \cap \cdots \cap X^\square(F^{(k(n-k))}_{n-k}) \text{ is finite} \]

and counted by **standard Young tableaux**:

\[\#Z_{k,n} = \#\text{SYT}(\square) = \left\{ \begin{array}{c}
1 & 2 & 4 \\
3 & 5 & 6
\end{array}, \quad \begin{array}{c}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}, \quad \cdots \right\}. \]
Choosing flags

Theorem. For *general* choices of $F^{(i)}$,

$$Z_{k,n} = X^\Box(F_{n-k}^{(1)}) \cap \cdots \cap X^\Box(F_{n-k}^{(k(n-k))})$$

is **finite** and counted by **standard Young tableaux**:

$$\#Z_{k,n} = \#\text{SYT}(\begin{array}{ccc} 1 & 2 & 4 \\ 3 & 5 & 6 \end{array}) = \left\{ \begin{array}{ccc} 1 & 2 & 4 \\ 3 & 5 & 6 \end{array}, \begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}, \cdots \right\}.$$
Choosing flags

Theorem. For general choices of $F^{(i)}$,

$$Z_{k,n} = X^\square(F^{(1)}_{n-k}) \cap \cdots \cap X^\square(F^{(k(n-k))}_{n-k})$$

is finite and counted by standard Young tableaux:

$$\#Z_{k,n} = \#\text{SYT}(\square) = \left\{ \begin{array}{c|c|c} 1 & 2 & 4 \\ \hline 3 & 5 & 6 \\ \end{array} , \begin{array}{c|c|c} 1 & 3 & 5 \\ \hline 2 & 4 & 6 \\ \end{array} , \cdots \right\}.$$

General Schubert problems: consider $S \cap \mathcal{F}$, for a **complete flag**:

$$\mathcal{F} : F_1 \subset F_2 \subset \cdots \subset F_n = \mathbb{C}^n.$$
Choosing flags

Theorem. For general choices of $F^{(i)}$,

$$Z_{k,n} = X^{\square}(F_{n-k}^{(1)}) \cap \cdots \cap X^{\square}(F_{n-k}^{(k(n-k))})$$

is finite and counted by standard Young tableaux:

$$\#Z_{k,n} = \#\text{SYT}(\begin{array}{cccc}1 & 2 & 4 \\ 3 & 5 & 6 \end{array} , \begin{array}{ccc}1 & 3 & 5 \\ 2 & 4 & 6 \end{array} , \cdots).$$

General Schubert problems: consider $S \cap \mathcal{F}$, for a complete flag:

$$\mathcal{F} : F_1 \subset F_2 \subset \cdots \subset F_n = \mathbb{C}^n.$$

Problems:

1. In bad cases, $Z_{k,n}$ might have multiplicity (or be infinite).
2. No canonical bijection $Z_{k,n} \leftrightarrow \text{SYT}(\begin{array}{cccc}1 & 2 & 4 \\ 3 & 5 & 6 \end{array})$ in general.
Tangent flags to the rational normal curve
Tangent flags to the rational normal curve

- **The rational normal curve** in \mathbb{P}^{n-1}:

 $$
 \mathbb{P}^1 \hookrightarrow \mathbb{P}(\mathbb{C}^n) = \mathbb{P}^{n-1} \text{ by }
 t \mapsto [1 : t : t^2 : \cdots : t^{n-1}]
 $$

- (Maximally) **tangent flag** $\mathcal{F}(t)$, $t \in \mathbb{P}^1$:
Tangent flags to the rational normal curve

- The **rational normal curve** in \mathbb{P}^{n-1}:

 $$\mathbb{P}^1 \hookrightarrow \mathbb{P}(\mathbb{C}^n) = \mathbb{P}^{n-1} \text{ by}$$

 $$t \mapsto [1 : t : t^2 : \cdots : t^{n-1}]$$

- (Maximally) **tangent flag** $\mathcal{F}(t)$, $t \in \mathbb{P}^1$:

- Schubert problems using $\mathcal{F}(t)$ relate to **moduli of curves**:
 - (limit) linear series, Weierstrass points, Brill–Noether loci, . . .
Tangent flags to the rational normal curve

- The **rational normal curve** in \mathbb{P}^{n-1}:

 $$\mathbb{P}^1 \hookrightarrow \mathbb{P}(\mathbb{C}^n) = \mathbb{P}^{n-1} \text{ by } \ t \mapsto [1 : t : t^2 : \cdots : t^{n-1}]$$

- (Maximally) **tangent flag** $\mathcal{F}(t)$, $t \in \mathbb{P}^1$:

- Schubert problems using $\mathcal{F}(t)$ relate to **moduli of curves**:
 - (limit) linear series, Weierstrass points, Brill–Noether loci, . . .

- Eisenbud–Harris '83:
 Solutions to these problems have the expected dimension.
Schubert calculus over \mathbb{R}?

Conjecture (Shapiro–Shapiro '95)

For any choice of distinct real $t_1, \ldots, t_N \in \mathbb{RP}^1$,

$$Z_{k,n} = X^\Box(\mathcal{F}(t_1)_{n-k}) \cap \cdots \cap X^\Box(\mathcal{F}(t_N)_{n-k})$$

consists entirely of real, multiplicity-free points.
Schubert calculus over \mathbb{R}?

Conjecture (Shapiro–Shapiro '95)

For any choice of distinct real $t_1, \ldots, t_N \in \mathbb{RP}^1$,

$$Z_{k,n} = X^\square(F(t_1)_{n-k}) \cap \cdots \cap X^\square(F(t_N)_{n-k})$$

consists entirely of real, multiplicity-free points.

Proven in 2005 / 2009:

Case $k = 2$ established earlier:

Schubert calculus over \mathbb{R}?

<table>
<thead>
<tr>
<th>Theorem (M–T–V ’05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any choice of distinct real $t_1, \ldots, t_N \in \mathbb{RP}^1$,</td>
</tr>
<tr>
<td>$Z_{k,n} = X^{\square}(\mathcal{F}(t_1){n-k}) \cap \cdots \cap X^{\square}(\mathcal{F}(t_N){n-k})$</td>
</tr>
<tr>
<td>consists entirely of real, multiplicity-free points.</td>
</tr>
</tbody>
</table>

Proven in 2005 / 2009:

Case $k = 2$ established earlier:

Combinatorial consequences

Theorem (M–T–V ’05)

For any choice of distinct real $t_1, \ldots, t_N \in \mathbb{RP}^1$,

$$Z_{k,n} = X^\square(\mathcal{F}(t_1)_{n-k}) \cap \cdots \cap X^\square(\mathcal{F}(t_N)_{n-k})$$

consists entirely of real, multiplicity-free points.

▶ The cardinality of $Z_{k,n}$ is always exactly $\# \text{SYT}$.

▶ This suggests there may be a canonical bijection $Z_{k,n} \leftrightarrow \text{SYT}$.
Combinatorial consequences

Theorem (M–T–V ’05)

For any choice of distinct real \(t_1, \ldots, t_N \in \mathbb{RP}^1 \),

\[
Z_{k,n} = X^\square(\mathcal{F}(t_1)^{n-k}) \cap \cdots \cap X^\square(\mathcal{F}(t_N)^{n-k})
\]

consists entirely of real, multiplicity-free points.

- The cardinality of \(Z_{k,n} \) is always exactly \(#\text{SYT}\).
- This suggests there may be a canonical bijection

\[
Z_{k,n} \leftrightarrow \text{SYT}.
\]
Part 2. Labeling
Families of geometry problems

We want to study $Z_{k,n}$ for every possible choice of t_i's.

Configuration space: $P_N(\mathbb{R}) = \{\text{sets of distinct } t_1, \ldots, t_N \in \mathbb{R}\}$.
Families of geometry problems

We want to study $Z_{k,n}$ for every possible choice of t_i's.

Configuration space: $P_N(\mathbb{R}) = \{\text{sets of distinct } t_1, \ldots, t_N \in \mathbb{R}\}$.

$Z_{k,n}$

$P_N(\mathbb{R})$
Families of geometry problems

We want to study $Z_{k,n}$ for every possible choice of t_i's.

Configuration space: $P_N(\mathbb{R}) = \{\text{sets of distinct } t_1, \ldots, t_N \in \mathbb{R}\}$.

Fiber is $Z_{k,n} = X_{\square}(\mathcal{F}(t_1)) \cap \cdots \cap X_{\square}(\mathcal{F}(t_N))$.
Families of geometry problems

We want to study $Z_{k,n}$ for every possible choice of t_i's.

Configuration space: $P_N(\mathbb{R}) = \{\text{sets of distinct } t_1, \ldots, t_N \in \mathbb{R}\}$.

Fiber is $Z_{k,n} = \bigcap X^\square(\mathcal{F}(t_1)) \cap \cdots \cap X^\square(\mathcal{F}(t_N))$.

Observation: $P_N(\mathbb{R})$ is contractible. No monodromy!

If we can label one fiber by tableaux, we can label all of them.
How to find combinatorics in geometry

Key idea

Degenerate the problem until it breaks into pieces.
How to find combinatorics in geometry

Key idea

Degenerate the problem until it breaks into pieces.

Take \((t_1, \ldots, t_N) = (z, z^2, \ldots, z^N)\) and take \(\lim_{z \to 0}\)

What will happen to \(Z_k, n\) at \(z = 0\)?
How to find combinatorics in geometry

Key idea

Degenerate the problem until it breaks into pieces.

Take \((t_1, \ldots, t_N) = (z, z^2, \ldots, z^N)\) and take \(\lim_{z \to 0}\).

What will happen to \(Z_{k,n}\) at \(z = 0\)?
Lines through 4 given lines, redux

Note: \(\{ \text{lines in } \mathbb{P}^3 \} = Gr(2, 4) \approx \left\{ \begin{bmatrix} 0 & 1 & * & * \\ 1 & 0 & * & * \end{bmatrix} \right\} \).
Lines through 4 given lines, redux

Note: \(\{ \text{lines in } \mathbb{P}^3 \} = Gr(2, 4) \approx \left\{ \begin{bmatrix} 0 & 1 & * & * \\ 1 & 0 & * & * \end{bmatrix} \right\} \).

Set up \(Z_{2,4} \) using \textbf{tangent lines} from the flags \(\mathcal{F}(t) \):

\[
Z_{2,4} = X^\square(\mathcal{F}(z)) \cap \cdots \cap X^\square(\mathcal{F}(z^4)) \subset Gr(2, 4)
= \{ \text{lines in } \mathbb{P}^3 \text{ meeting 4 given (tangent) lines} \}\.
Lines through 4 given lines, redux

Note: \(\{ \text{lines in } \mathbb{P}^3 \} = \text{Gr}(2, 4) \approx \left\{ \begin{bmatrix} 0 & 1 & * & * \\ 1 & 0 & * & * \end{bmatrix} \right\} \).

Set up \(Z_{2,4} \) using tangent lines from the flags \(F(t) \):

\[
Z_{2,4} = X^\Box(F(z)) \cap \cdots \cap X^\Box(F(z^4)) \subset \text{Gr}(2, 4)
\]

\[
= \{ \text{lines in } \mathbb{P}^3 \text{ meeting 4 given (tangent) lines} \}.
\]
Lines through 4 given lines, redux

Note: \(\{ \text{lines in } \mathbb{P}^3 \} = \text{Gr}(2,4) \approx \left\{ \begin{bmatrix} 0 & 1 & * & * \\ 1 & 0 & * & * \end{bmatrix} \right\}. \)

Set up \(Z_{2,4} \) using \textbf{tangent lines} from the flags \(\mathcal{F}(t) \):

\[
Z_{2,4} = X^\Box(\mathcal{F}(z)) \cap \cdots \cap X^\Box(\mathcal{F}(z^4)) \subset \text{Gr}(2,4)
\]

\[
= \{ \text{lines in } \mathbb{P}^3 \text{ meeting 4 given (tangent) lines} \}.
\]

\[
\text{Pr}(\mathbb{R}) \quad Z_{2,4} \subset \text{Gr}(2,4) \quad \text{(two solutions)}
\]
Tableau labels from Plücker coordinates

Limiting matrix:

\[
\begin{bmatrix}
0 & 1 & \approx z^1 & \approx z^3 \\
1 & 0 & \approx z^4 & \approx z^6 \\
\end{bmatrix}
\]

Plücker coordinates (minors) on \(Gr(2,4)\):

\[
\begin{align*}
det_{14} &= O(z^3) \\
det_{12} &= 1 \\
det_{13} &= O(z^1) \\
det_{23} &= O(z^4) \\
det_{24} &= O(z^6) \\
det_{34} &= O(z^{10})
\end{align*}
\]
Tableau labels from Plücker coordinates

Limiting matrix:

\[
\begin{pmatrix}
0 & 1 & \approx z^1 & \approx z^3 \\
1 & 0 & \approx z^4 & \approx z^6
\end{pmatrix}
\]

Plücker coordinates (minors) on \(Gr(2, 4) \):

\[
\begin{align*}
det_{12} &= z^0 \\
det_{13} &= O(z^1) \\
det_{14} &= O(z^{1+2}) \\
det_{23} &= O(z^{1+3}) \\
det_{24} &= O(z^{1+2+3}) \\
det_{34} &= O(z^{1+2+3+4})
\end{align*}
\]
Combinatorics and geometry

Theorem. This procedure gives a bijection \(Z_{k,n} \leftrightarrow \text{SYT}(\square) \).
(Purbhoo ’09, Speyer ’14)
Combinatorics and geometry

Theorem. This procedure gives a bijection $Z_{k,n} \leftrightarrow \text{SYT}(\square)$. (Purbhoo ’09, Speyer ’14)

And: moving $\{t_i\}$ on \mathbb{RP}^1 changes the labels by known algorithms!

![Diagram of RP^1 with labels for tableau promotion and tableau evacuation]
Combinatorics and geometry

Theorem. This procedure gives a bijection $Z_{k,n} \leftrightarrow \text{SYT}(\square)$. (Purbhoo ’09, Speyer ’14)

And: moving $\{t_i\}$ on \mathbb{RP}^1 changes the labels by known algorithms!

And more:

- Topology and genus when $\dim(Z) = 1$ (Levinson, Gillespie–L)
- Orthogonal Grassmannians (Purbhoo, Gillespie–L–Purbhoo)
- Vector bundles on $\overline{M}_{0,n}$ (Kamnitzer, Rybnikov)
Part 3. Topology!
A challenge and a new approach

Theorem (M–T–V ’05, ’09)

For \(t_1, \ldots, t_N \in \mathbb{RP}^1 \), \(Z_{k,n} \) consists of real, multiplicity-free points.

Challenge for geometers:

- M–T–V proof uses integrable systems, the Bethe ansatz
A challenge and a new approach

Theorem (M–T–V ’05, ’09)

For \(t_1, \ldots, t_N \in \mathbb{RP}^1 \), \(Z_{k,n} \) consists of real, multiplicity-free points.

Challenge for geometers:

- M–T–V proof uses integrable systems, the Bethe ansatz
- Subsequent geometry work used M–T–V as black box.
- Many open generalizations of interest!
A challenge and a new approach

Theorem (M–T–V '05, '09)

For $t_1, \ldots, t_N \in \mathbb{RP}^1$, $Z_{k,n}$ consists of real, multiplicity-free points.

Challenge for geometers:

- M–T–V proof uses integrable systems, the Bethe ansatz
- Subsequent geometry work used M–T–V as black box.
- Many open generalizations of interest!

It turns out there is a topological / geometric approach.

\[
\begin{pmatrix}
1 & 2 & 5 \\
3 & 4 & 6
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{pmatrix}, \ldots
\]

Oriented Young tableaux.
Generalization: complex conjugate points on \mathbb{P}^1

Before: Defined $Z_{k,n}$ using **real** points $t_i \in \mathbb{R}\mathbb{P}^1$.
Generalization: complex conjugate points on \mathbb{P}^1

Before: Defined $Z_{k,n}$ using real points $t_i \in \mathbb{RP}^1$.

Now: $Z_{k,n} = \bigcap_{i=1}^{n_1} X^\square(t_i) \cap \bigcap_{j=1}^{n_2} X^\square(t_j) \cap X^\square(t_j)$.

- $\bigcap_{i=1}^{n_1}$ real
- $\bigcap_{j=1}^{n_2}$ complex conjugate pairs

Mixed configuration space: For a partition $\mu = (2n_2, 1n_1)$, let $\mathcal{P}(\mu) = \{\text{sets of } n_1 \text{ distinct points on } \mathbb{R}, \ n_2 \text{ complex conjugate pairs on } \mathbb{C} \setminus \mathbb{R}\} \subseteq \mathcal{P}_r(\mathbb{C}) \ (r = 2n_2 + n_1)$.

(Base case: $\mu = (1N)$, all real t_i.)

Generalization: complex conjugate points on \(\mathbb{P}^1 \)

Before: Defined \(Z_{k,n} \) using \textbf{real} points \(t_i \in \mathbb{RP}^1 \).

Now: \[
Z_{k,n} = \bigcap_{i=1}^{n_1} X^\square(t_i) \cap \bigcap_{j=1}^{n_2} X^\square(t_j) \cap X^\square(t_j).
\]

\textbf{Mixed configuration space:}
For a partition \(\mu = (2^{n_2}, 1^{n_1}) \), let

\[
P(\mu) = \left\{ \text{sets of } n_1 \text{ distinct points on } \mathbb{R}, \right. \\
\left. \text{and } n_2 \text{ complex conjugate pairs on } \mathbb{C} \setminus \mathbb{R} \right\}
\]

\[
\subseteq P_r(\mathbb{C}) \ (r = 2n_2 + n_1).
\]

(Base case: \(\mu = (1^N), \text{ all real } t_i. \))
Topological and algebraic degrees

How many real points in $Z_{k,n}$ for $(t_1, \ldots, t_N) \in P(\mu)$?

- Upper bound from (algebraic) degree $= \#SYT(\mu)$.

- Upper bound from (algebraic) degree $= \#SYT(\mu)$.

- We use a careful twist of standard orientation on $Gr(k,n)$.

Topological and algebraic degrees

How many real points in $Z_{k,n}$ for $(t_1, \ldots, t_N) \in P(\mu)$?

- Upper bound from (algebraic) degree $= \#\text{SYT}(\mu)$.
- Lower bound from topological degree... (=?):

![Diagram showing real points in $Z_{k,n}$ and $P(\mu)$ with algebraic and topological degrees indicated.]

Algebraic degree: 3

Topological degree: 1

We use a careful twist of standard orientation on $Gr(k,n)$.
Topological and algebraic degrees

How many real points in $Z_{k,n}$ for $(t_1, \ldots, t_N) \in P(\mu)$?

- Upper bound from **(algebraic) degree** $= \#\text{SYT}(\mu)$.
- Lower bound from **topological degree**... ($\equiv?$):

\[Z_{k,n} \]

![Diagram](image)

Algebraic degree: 3

\[P(\mu) \]
Topological and algebraic degrees

How many real points in \(Z_{k,n} \) for \((t_1, \ldots, t_N) \in P(\mu)\)?

- Upper bound from \textbf{(algebraic) degree} = \#\text{SYT}[^{\text{??}}].
- Lower bound from \textbf{topological degree}... (=?):

![Diagram]

\(Z_{k,n} \)

Algebraic degree: 3

Topological degree: 1
Topological and algebraic degrees

How many real points in $\mathbb{Z}_{k,n}$ for $(t_1, \ldots, t_N) \in P(\mu)$?

- Upper bound from (algebraic) degree $= \#\text{SYT}(\mu)$.
- Lower bound from topological degree... ($=?$):

We use a careful twist of standard orientation on $\text{Gr}(k,n)$.
The topological degree of $\mathcal{Z}_{k,n}$

<table>
<thead>
<tr>
<th>λ, μ</th>
<th>(4)</th>
<th>(3, 1)</th>
<th>(22)</th>
<th>(2, 12)</th>
<th>(14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\square</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\square</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>\square</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>\square</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>\square</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
The topological degree of $\mathcal{Z}_{k,n}$

<table>
<thead>
<tr>
<th>λ, μ</th>
<th>(4)</th>
<th>(3, 1)</th>
<th>(22)</th>
<th>(2, 12)</th>
<th>(14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\square</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\square</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>\square</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>\square</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>\square</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

For $S_{k(n-k)}$, let \square be the $k \times (n - k)$ rectangle, $\mu = (2^{n_2}, 1^{n_1})$.

Character table of S_4. $(\chi^\lambda(\mu))$
The topological degree of $\mathcal{Z}_{k,n}$

Character table of S_4. $(\chi^\lambda(\mu))$

<table>
<thead>
<tr>
<th>λ, μ</th>
<th>(4)</th>
<th>(3, 1)</th>
<th>(22)</th>
<th>(2, 12)</th>
<th>(14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\begin{array}{c} \text{□□□□} \ \text{□□□} \ \text{□□□} \ \text{□□□} \end{array}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\begin{array}{c} \text{□□□□} \ \text{□□□} \ \text{□□□} \ \text{□□□} \end{array}$</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>$\begin{array}{c} \text{□□□□} \ \text{□□□} \ \text{□□□} \ \text{□□□} \end{array}$</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$\begin{array}{c} \text{□□□□} \ \text{□□□} \ \text{□□□} \ \text{□□□} \end{array}$</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>$\begin{array}{c} \text{□□□□} \ \text{□□□} \ \text{□□□} \ \text{□□□} \end{array}$</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

For $S_{k(n-k)}$, let $\begin{array}{c} \text{□□□□} \\ \text{□□□} \\ \text{□□□} \\ \text{□□□} \end{array}$ be the $k \times (n - k)$ rectangle, $\mu = (2^{n_2}, 1^{n_1})$.

Theorem (L, Purbhoo ‘19)

There is an orientation, the **character orientation**, such that the family $\mathcal{Z}_{k,n}$ has topological degree $\chi^{\begin{array}{c} \text{□□□□} \\ \text{□□□} \\ \text{□□□} \\ \text{□□□} \end{array}}(\mu)$ over $P(\mu)$.
Signed Young tableaux

<table>
<thead>
<tr>
<th>Theorem (L, Purbhoo ‘19)</th>
</tr>
</thead>
</table>

*There is an orientation, the **character orientation**, such that the family $Z_{k,n}$ has topological degree $\chi^{\mu}(\mu)$ over $P(\mu)$.***

Murnaghan–Nakayama rule for $\chi^{\lambda}(\mu)$, $\mu = (2^n, 1^n)$:

\[
\chi^{\lambda}(\mu) = \sum_{T} (-1)^{\#(T)}: \mu\text{-domino tableaux (}+\text{)}
\]

Special case: $\mu = (1^N)$, no dominos

$\Rightarrow \chi^{1^N} = \#\text{SYT}.$

Corollary: Shapiro–Shapiro Conjecture.
Signed Young tableaux

Theorem (L, Purbhoo '19)

There is an orientation, the character orientation, such that the family $\mathcal{Z}_{k,n}$ has topological degree $\chi_{\lambda}(\mu)$ over $P(\mu)$.

Murnaghan–Nakayama rule for $\chi_{\lambda}(\mu)$, $\mu = (2^{n_2}, 1^{n_1})$:

$$
\chi_{\lambda}(\mu) = \sum_T (-1)^{#(T)} \mu\text{-domino tableaux } (+) \begin{array}{ccc}
1 & 2 & 4 \\
3 & 5 & 6
\end{array}, (-) \begin{array}{ccc}
1 & 3 & 4 \\
2 & 5 & 6
\end{array}, \ldots
$$

shape(T) = λ.
Signed Young tableaux

Theorem (L, Purbhoo ‘19)

There is an orientation, the **character orientation**, such that the family $Z_{k,n}$ has topological degree $\chi(\mu)$ over $P(\mu)$.

Murnaghan–Nakayama rule for $\chi^\lambda(\mu)$, $\mu = (2^{n_2}, 1^{n_1})$:

$$\chi^\lambda(\mu) = \sum_T (-1)^{\#(T)}: \mu\text{-domino tableaux } (+) \begin{array}{ccc} 1 & 2 & 4 \\ 3 & 5 & 6 \end{array}, (-) \begin{array}{ccc} 1 & 3 & 4 \\ 2 & 5 & 6 \end{array}, \cdots$$

where $\text{shape}(T) = \lambda$.

- **Special case**: $\mu = (1^N)$, no dominos $\rightsquigarrow \chi(1^N) = \#\text{SYT}$.
- **Corollary**: Shapiro–Shapiro Conjecture.
Labeling \(Z_{k,n} \) by signed Young tableaux

Proof sketch:

- Label limit fibers by tableaux.
- Track +/- signs along a network of paths.
Labeling $Z_{k,n}$ by signed Young tableaux

Proof sketch:

- Label limit fibers by tableaux.
- Track $+/−$ signs along a network of paths.

Case 1: $\frac{1}{2} \leftrightarrow \frac{1}{2}$ / $12 \leftrightarrow 12$

$P(\mu) \quad P(\mu = (1^6)) \quad P(\mu' = (2, 1^4))$
Labeling $Z_{k,n}$ by signed Young tableaux

Proof sketch:

- Label limit fibers by tableaux.
- Track $+/-$ signs along a network of paths.

Case 2: $\begin{array}{c} 2 \ 3 \\ 1 \ 2 \ 4 \ 5 \ 6 \end{array} \leftrightarrow \begin{array}{c} 3 \\ 1 \ 2 \ 4 \ 5 \ 6 \end{array}$

$P(\mu) \leftarrow \begin{array}{c} 2 \ 3 \\ 1 \ 2 \ 4 \ 5 \ 6 \end{array} \Rightarrow (\varnothing)$

$P(\mu) \leftarrow \begin{array}{c} 2 \ 3 \\ 1 \ 2 \ 4 \ 5 \ 6 \end{array} \Rightarrow (\varnothing)$

$P(\mu = (1^6)) \leftarrow (\varnothing)$

$P(\mu = (2, 1^4)) \leftarrow (\varnothing)$

$P(\mu') \leftarrow (\varnothing)$
Open questions

- (Representation theory).
 Do all S_N characters $\chi^\lambda(\mu)$ give topological degrees of real Schubert problems?

- (Complex geometry).
 Explicit geometry over $P(\mu)$ for $\mu \neq (1^N)$?

- (Stable curves).
 How does the geometry look over the moduli space $\overline{M}_{0,N}$?
 - $\overline{M}_{0,N}(\mathbb{R})$ is non-orientable!

Many interesting relationships to find between geometry and combinatorics.
Thank you!