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Affine Symmetric Group S̃n

Definition

The affine symmetric group on n elements S̃n consists of bijections w : Z→ Z
satisfying:

w(x + n) = w(x) for all x ∈ Z, and

w(1) + w(2) + · · ·+ w(n) =
(
n+1

2

)
The window notation of w ∈ S̃n is [w(1), . . . ,w(n)]. E.g., [−3, 2, 7, 4] ∈ S̃4 is
the affine permutation:

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·

↓

· · · −7 −2 3 0 −3 2 7 4 1 6 11 8 · · ·



Affine Symmetric Group S̃n

S̃n is generated by simple transpositions s1, . . . , sn where

si = [w(1), . . . ,w(i + 1),w(i), . . . ,w(n)], for 1 ≤ i ≤ n − 1

and
sn = [w(0),w(2),w(3), . . . ,w(n + 1)].

Definition

A reduced word of w ∈ S̃n is a minimal length word i1i2 · · · i` in the alphabet
[n] := {1, 2, . . . , n} such that w = si1si2 · · · si` .

A reduced word for [−3, 2, 7, 4] ∈ S̃4 is 121343.

How do we know 121343 is minimal length?



Affine Symmetric Group S̃n

Let
(Z
k

)
:= {(i1, . . . , ik) : ij ∈ Z and i1 < i2 < · · · < ik}.

Definition

The n-periodic k-subsets of Z is the set
(Z
k

)
n

:=
(Z
k

)
/ ∼n where

I ∼n J ⇔ I − J = m(n, . . . , n) for some m ∈ Z.

Definition

The 2-inversions of w ∈ S̃n is the set:

Inv2(w) =

{
(i , j) : (i , j) ∈

(
Z
k

)
n

and w−1(i) > w−1(j)

}
.

The length of w ∈ S̃n is `(w) := | Inv2(w)|.

Inv2([−3, 2, 7, 4]) = {(1, 2), (1, 3), (2, 3), (1, 4), (1, 7), (4, 7)}



Affine Symmetric Group S̃n

Definition

The (right) weak order on S̃n is the transitive closure of the relation

v l w ⇔ w = vsi and `(w) = `(v) + 1.
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Affine Symmetric Group S̃n

There is a natural injection ι : Sn ↪→ S̃n sending w 7→ [w(1), . . . ,w(n)].
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Affine Symmetric Group S̃n

There is a natural injection ι : Sn ↪→ S̃n sending w 7→ [w(1), . . . ,w(n)].
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Affine Symmetric Group S̃n

There is a natural injection ι : Sn ↪→ S̃n sending w 7→ [w(1), . . . ,w(n)].
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[3,2,1]
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Affine Symmetric Group S̃n

Properties of the weak order:

Ranked poset with rank function `(w).

In Sn, unique min element Id = [1, . . . , n] and max element w0 = [n, . . . , 1].

Maximal saturated chains ↔ reduced words of w0.



Higher Weak Order (k = 2)

Let R(w) be the reduced words for w ∈ S̃n.

Definition
Reduced words ρ and σ differ by a commutation move if σ is obtained from ρ by
an adjacent swap ij → ji for i 6≡ j ± 1 (mod n). If ρ and σ differ by a sequence of
commutation moves, they are commutation equivalent, written ρ ∼ σ.

Definition
Reduced words ρ and σ differ by a directed braid move if σ is obtained from ρ
by an adjacent swap i(i + 1)i → (i + 1)i(i + 1).

The commutation classes of w are C(w) := R(w)/ ∼.



Higher Weak Order (k = 2)

Let G2(w) be a directed graph with vertices C(w) and directed edges derived from
directed braid moves.

E.g. w = [3, 2, 1] ∈ S̃3.

[212]

[121]



Higher Weak Order (k = 2)

Let G2(w) be a directed graph with vertices C(w) and directed edges derived from
directed braid moves.

E.g. w = [−3, 2, 7, 4] ∈ S̃4.

[212434] = [214234]

[212343] [121434]

[121343] = [123143]

121→ 212 343→ 434

343→ 434 121→ 212



Higher Weak Order (k = 2)

Theorem (Matsumoto (1964), Tits (1969))

For any w ∈ S̃n and ρ, σ ∈ R(w), there is a sequence of commutation and braid
moves that takes ρ to σ.

In fact, G2(w) looks like it could be a ranked poset!

Theorem (Manin, Schechtman (1989))

Let w0 = [n, n − 1, . . . , 1]. Then G2(w0) is the Hasse diagram of a ranked poset
with a unique minimal and maximal element.

This ranked poset is the second higher weak order Bn,2(w0). What is the rank
function?



Higher Weak Order (k = 2)

Reduced words ρ ∈ R(w) biject to linear orders on the 2-inversion set Inv2(w).

E.g. for [−3, 2, 7, 4] ∈ S̃4, we have 121343↔ 12 < 13 < 23 < 14 < 17 < 47.

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·

↓

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·



Higher Weak Order (k = 2)

Reduced words ρ ∈ R(w) biject to linear orders on the 2-inversion set Inv2(w).

E.g. for [−3, 2, 7, 4] ∈ S̃4, we have 121343↔ 12 < 13 < 23 < 14 < 17 < 47.

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·

↓

· · · −2 −3 −1 0 2 1 3 4 6 5 7 8 · · ·



Higher Weak Order (k = 2)

Reduced words ρ ∈ R(w) biject to linear orders on the 2-inversion set Inv2(w).

E.g. for [−3, 2, 7, 4] ∈ S̃4, we have 121343↔ 12 < 13 < 23 < 14 < 17 < 47.

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·

↓

· · · −2 −1 −3 0 2 3 1 4 6 7 5 8 · · ·



Higher Weak Order (k = 2)

Reduced words ρ ∈ R(w) biject to linear orders on the 2-inversion set Inv2(w).

E.g. for [−3, 2, 7, 4] ∈ S̃4, we have 121343↔ 12 < 13 < 23 < 14 < 17 < 47.

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·

↓

· · · −1 −2 −3 0 3 2 1 4 7 6 5 8 · · ·



Higher Weak Order (k = 2)

Reduced words ρ ∈ R(w) biject to linear orders on the 2-inversion set Inv2(w).

E.g. for [−3, 2, 7, 4] ∈ S̃4, we have 121343↔ 12 < 13 < 23 < 14 < 17 < 47.

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·

↓

· · · −1 −2 0 −3 3 2 4 1 7 6 8 5 · · ·



Higher Weak Order (k = 2)

Reduced words ρ ∈ R(w) biject to linear orders on the 2-inversion set Inv2(w).

E.g. for [−3, 2, 7, 4] ∈ S̃4, we have 121343↔ 12 < 13 < 23 < 14 < 17 < 47.

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·

↓

· · · −7 −2 0 3 −3 2 4 7 1 6 8 11 · · ·



Higher Weak Order (k = 2)

Reduced words ρ ∈ R(w) biject to linear orders on the 2-inversion set Inv2(w).

E.g. for [−3, 2, 7, 4] ∈ S̃4, we have 121343↔ 12 < 13 < 23 < 14 < 17 < 47.

· · · −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·

↓

· · · −7 −2 3 0 −3 2 7 4 1 6 11 8 · · ·



Higher Weak Order (k = 2)

Definition

The set of k-inversions of w ∈ S̃n is

Invk(w) :=

{
(i1, . . . , ik) ∈

(
Z
k

)
n

: w−1(i1) > · · · > w−1(ik)

}
.

Definition

Let ρ ∈ R(w) with associated linear order (i1, j1) <ρ (i2, j2) <ρ · · · <ρ (i`, j`). The
reversal set of ρ is

Rev(ρ) := {(i , j , k) ∈ Inv3(w) : (j , k) <ρ (i , k) <ρ (i , k)}.

Commutation classes are uniquely defined by their reversal set. The rank function
on Bn,2(w0) is |Rev(ρ)|.



Higher Weak Order (k = 2)

[212434] = [214234]

[212343] [121434]

[121343] = [123143]

121→ 212 343→ 434

343→ 434 121→ 212



Higher Weak Order (k = 2)

23 < 13 < 12 < 47 < 17 < 14

23 < 13 < 12 < 14 < 17 < 47 12 < 13 < 23 < 47 < 17 < 14

12 < 13 < 23 < 14 < 17 < 47

123 147

147 123



Higher Weak Order (k = 2)

{123, 147}

{123} {147}

∅

123 147

147 123



Higher Weak Order (k = 2)

{123, 147}

{123} {147}

∅

123 147

147 123

123 < 147 147 < 123



Higher Weak Order (k = 2)

{123, 147}

{123} {147}

∅

123 147

147 123

123 < 147 147 < 123



Manin-Schechtman Higher Weak Orders

Classically only defined for the longest permutation w0 = [n, n − 1, . . . , 1] which

has inversion set Invk(w0) =
(

[n]
k

)
.

For X ∈
(Z
k

)
n
, the packet of X = (x1, . . . , xk) is

P(X ) := {X1,X2, . . . ,Xk},

where Xi = (x1, . . . , x̂i , . . . , xk). The lexicographic (lex) order on P(X ) is
Xk < · · · < X1 and the antilexicographic (antilex) order is X1 < · · · < Xk .

Definition

A linear order <ρ on Invk(w0) is admissible if <ρ restricts to either the lex or
antilex order on any packet P(X ) for X ∈ Invk+1(w0). The set of admissible
orders on Invk(w0) is denoted An,k(w0).



Manin-Schechtman Higher Weak Orders

Some linear orders for n = 5, k = 3:

3 123 < 124 < 125 < 134 < 135 < 145 < 234 < 235 < 245 < 345

7 123 < 124 < 125 < 134 < 145 < 135 < 234 < 235 < 245 < 345

3 123 < 124 < 125 < 134 < 135 < 145 < 345 < 245 < 235 < 234

Definition

Two admissible orders <ρ and <σ on Invk(w0) are commutation equivalent if
<σ differs from <ρ by a sequence of adjacent swaps X < Y → Y < X where
X ,Y do not lie in any common packet P(Z ).

Denote the set of k-admissible orders modulo commutation equivalence by
Bn,k(w0) := An,k(w0)/ ∼.



Manin-Schechtman Higher Weak Orders

Definition

The set of reversals of an admissible order <ρ on Invk(w0) is

Rev(<ρ) = {X ∈ Invk+1(w0) : <ρ is the antilex order on P(X )}.

Definition

Two admissible orders <ρ and <σ on Invk(w0) differ by a directed packet flip if
<σ is obtained from <ρ by reversing the order on a lex packet P(X ) that forms a
chain in <ρ:

Xk+1 lρ · · ·lρ X1 → X1 lσ · · ·lσ Xk+1.



Manin-Schechtman Higher Weak Orders

k = 1 k = 2 general k
permutations reduced words admissible orders

inversions reversal sets reversal sets
simple tranposition directed braid move directed packet flip



Manin-Schechtman Higher Weak Orders

Let Gk(w0) be the directed graph with vertex set Bn,k(w0) and edges [<ρ]→ [<σ]
if some <ρ′ ∈ [<ρ] and <σ′ ∈ [<σ] differ by a directed packet flip.

Theorem (Manin, Schechtman (1989))

For 1 ≤ k ≤ n, the following hold:

Elements of Bn,k(w0) are uniquely determined by their reversal set.

The directed graph Gn,k(w0) is the Hasse diagram of a partial order ≤ on
Bn,k(w0), equivalent to single step inclusion of reversal sets.

The poset (Bn,k(w0),≤) is a ranked poset with unique min and max elements
whose reversal sets are ∅ and Invk+1(w0) respectively. The rank function is
|Rev([<ρ])|.
For 2 ≤ k ≤ n, elements of An,k(w0) are in bijection with maximal chains in
Bn,k−1(w0).

The kth higher weak order of w0 is (Bn,k(w0),≤).



Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions,
and zonotopal tilings.



Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions,
and zonotopal tilings.

Definition

A set U ⊆
(

[n]
k

)
is consistent if its intersection U ∩ P(X ) for all X ∈

(
[n]
k+1

)
is

either a prefix or suffix of P(X ) under lex order.

Theorem (Ziegler (1993))

There is a bijection between (Bn,k(w0),≤) and consistent subsets of
(

[n]
k+1

)
ordered

by single step inclusion.



Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions,
and zonotopal tilings.(

[n]
k

)
bijects with vertices in cyclic arrangement X n,n−k

c . e.g. n = 5, k = 3.

1

2

3

4

5



Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions,
and zonotopal tilings.(

[n]
k

)
bijects with vertices in cyclic arrangement X n,n−k

c . e.g. n = 5, k = 3.

1

2

3

4

5

345

245

235

234

134

124

123

125 145

135



Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions,
and zonotopal tilings.

Theorem (Ziegler (1993))

There is a bijection between (Bn,k(w0),≤) and the poset of uniform single
element extensions of the affine alternating oriented matroid C n,n−k .



Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions,
and zonotopal tilings.

Theorem (Thomas (1993))

There is a bijection between (Bn,k(w0),≤) and subsets U of the k-faces of [0, 1]n

such that T (U) tiles T ([0, 1]n) for some totally positive map T : Rn → Rk .



Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions,
and zonotopal tilings.

Theorem (Thomas (1993))

There is a bijection between (Bn,k(w0),≤) and subsets U of the k-faces of [0, 1]n

such that T (U) tiles T ([0, 1]n) for some totally positive map T : Rn → Rk .

Bn,2(w) bijects with rhombic tilings of the symmetric 2n-gon. E.g. for n = 4,
[123121] corresponds to

1

2

3

1

2

1



Higher Weak Orders in S̃n

Question: Starting from the weak order (S̃n,≤), what if instead of taking
maximal chains from Id to w0 we took maximal chains up to an arbitrary w?

We need a generalized notion of admissible orders.

Definition

A linear order <ρ on Invk(w) is admissible if it satisfies the following properties:

For X ∈ Invk+1(w), <ρ restricts to the lex or antilex order on P(X ).

For X ,Y ∈
(Z
k

)
n

such that X ≤P Y , we have X <ρ Y .



Higher Weak Orders in S̃n

Lemma

For w ∈ S̃n, k > 1, and X ∈
(Z
k

)
n
, we have X ∈ Invk(w) if and only if

P(X ) ⊆ Invk−1(w).

Lemma

Let w ∈ S̃n and X = [x1, . . . , xk ] ∈
(Z
k

)
n
. The intersection P(X ) ∩ Invk−1(w) is

one of the following:

the empty set ∅, or

a singleton set {Xi}, or

a consecutive pair {Xi ,Xi+1} for some 1 ≤ i ≤ k − 1, or

all of P(X ).



Higher Weak Orders in S̃n

Definition

Two n-periodic k-sets X = [x1, . . . , xk ] and Y = [y1, . . . , yk ] are congruent
modulo n, denoted X ≡ Y (mod n) if xi ≡ yi (mod n) for all 1 ≤ i ≤ k.

Lemma

If X = [x1, . . . , xk ],Y = [y1, . . . , yk ] ∈ Invk(w) such that

{x1 (mod n), . . . , xk (mod n)} = {y1 (mod n), . . . , yk (mod n)}

as sets, then X ≡ Y (mod n).



Higher Weak Orders in S̃n

Let v
(k)
i := (0, . . . , 0, 1, . . . , 1) with i zeroes followed by k − i ones.

Definition

The permanent poset (Invk(w),≤P) is the transitive closure of the relation
defined by the following.

For X ∈
( Z
k+1

)
n

with P(X ) ∩ Invk(w) = {Xi ,Xi+1}, we have Xi+1 ≤P Xi if
k − i even and Xi ≤P Xi+1 if k − i odd.

For X ,Y ∈
( Z
k+1

)
n

with Y = X + v
(k)
i , we have Y ≤P X if k − i is even and

X ≤P Y if k − i is odd.



Higher Weak Orders in S̃n

Definition

The permanent poset (Invk(w),≤P) is the transitive closure of the relation
defined by the following.

For X ∈
( Z
k+1

)
n

with P(X ) ∩ Invk(w) = {Xi ,Xi+1}, we have Xi ≤P Xi+1 if
k − i is odd if Xi+1 ≤P Xi if k − i is even.

For X ,Y ∈
( Z
k+1

)
n

with Y = X + v
(k)
i , we have X ≤P Y if k − i is odd and

Y ≤P X if k − i is even.

E.g. n = 3, k = 2, i = 1, w = [3, 1, 2], X = (1, 2, 3):

Inv2(w) = {23, 13} = {X1,X2}.

Bn,k(w) = {23 < 13} = {X1 < X2}.



Higher Weak Orders in S̃n

Definition

The permanent poset (Invk(w),≤P) is the transitive closure of the relation
defined by the following.

For X ∈
( Z
k+1

)
n

with P(X ) ∩ Invk(w) = {Xi ,Xi+1}, we have Xi ≤P Xi+1 if
k − i is odd and Xi+1 ≤P Xi if k − i is even.

For X ,Y ∈
( Z
k+1

)
n

with Y = X + v
(k)
i , we have X ≤P Y if k − i is odd and

Y ≤P X if k − i is even.

E.g. n = 3, k = 2, i = 2, w = [2, 3, 1], X = (1, 2, 3):

Inv2(w) = {13, 12} = {X2,X3}.

Bn,k(w) = {12 < 13} = {X3 < X2}.



Higher Weak Orders in S̃n

Definition

The permanent poset (Invk(w),≤P) is the transitive closure of the relation
defined by the following.

For X ∈
( Z
k+1

)
n

with P(X ) ∩ Invk(w) = {Xi ,Xi+1}, we have Xi ≤P Xi+1 if
k − i is odd and Xi+1 ≤P Xi if k − i is even.

For X ,Y ∈
( Z
k+1

)
n

with Y = X + v
(k)
i , we have X ≤P Y if k − i is odd and

Y ≤P X if k − i is even.

E.g. n = 3, k = 3, i = 1, w = [6, 2,−2]:

Inv2(w) = {12, 13, 23, 15, 16, 26} Inv3(w) = {123, 126, 156, 159}.

156

123 159

126



Higher Weak Orders in S̃n

Definition

A linear order <ρ on Invk(w) is admissible if it satisfies the following properties:

For X ∈ Invk+1(w), <ρ restricts to the lex or antilex order on P(X ).

For X ,Y ∈
(Z
k

)
n

such that X ≤P Y , we have X <ρ Y .

Definition

The set of reversals of an admissible order <ρ on Invk(w) is

Rev(<ρ) = {X ∈ Invk+1(w) : <ρ is the antilex order on P(X )}.

The set of admissible orders on Invk(w) is denoted An,k(w). The set of reversal
sets of An,k(w) is denoted Bn,k(w).



Higher Weak Orders in S̃n

Theorem (Billey-Elias-Liu-C.)

For all w ∈ S̃n, Bn,2(w) is a ranked poset under single step inclusion of reversal
sets, with unique min element ∅ and unique max element Inv3(w). Elements of
Bn,2(w) biject to maximal chains in [Id,w ] in the weak order.

What about general k? We conjectured and verified computationally for n ≤ 6
and `(w) ≤ 15.

Conjecture

For all w ∈ S̃n and 2 ≤ k ≤ n, Bn,k(w) is a ranked poset under single step
inclusion of reversal sets with unique min element ∅ and unique max element
Invk+1(w). Maximal chains of Bn,k(w) biject with admissible orders in An,k+1(w).



Weaving Patterns

We can visualize reduced words via wiring diagrams.

E.g. the wiring diagram of 121343 ∈ R([−3, 2, 7, 4]) is:

s1 s2 s1 s3

...

1

2

3

4

...

s4 s3

...

-3

2

7

4

...

Definition

For w ∈ S̃n, the weaving pattern associated to a reduced word ρ ∈ R(w) is a
function Pρ : [n]→ {−1,+1}∗ such that Pρ(i) is the sequence of up (+1)
crossings and down (-1) crossings of the wire labeled i .



Weaving Patterns

Definition

For w ∈ S̃n, the weaving pattern associated to a reduced word ρ ∈ R(w) is a
function Pρ : [n]→ {−1,+1}∗ such that Pρ(i) is the sequence of up (+1)
crossings and down (-1) crossings of the wire labeled i .

s1 s2 s1 s3

...

1

2

3

4

...

s4 s3

...

-3

2

7

4

...

4 −+
3 −−−−
2 −+
1 + + ++



Weaving Patterns

Definition

The length of a weaving pattern Pρ for ρ ∈ R(w) is `(Pρ) := `(w).

Definition

The content of a weaving pattern Pρ is a pair of sequences (ai ) and (bi ) where ai
is the number of +1’s in Pρ(i) and bi is the number of -1’s in Pρ(i).

Lemma

Let w ∈ S̃n, ρ ∈ R(w), and (ai ), (bi ) be the content of Pρ. Then the following
hold:

For all i ∈ [n], w−1(i) = i + ai − bi∑n
i=1 ai =

∑n
i=1 bi = `(Pρ)

If σ ∈ R(w) and σ ∼ ρ then Pσ = Pρ.

Open Problem: Given an arbitrary function P : [n]→ {−1, 1}∗, decide if P = Pρ
for some reduced word ρ.



Weaving Patterns

Lemma

Let w ,w ′ ∈ S̃n, ρ ∈ R(w), and σ ∈ R(w ′). Then Pρ = Pσ if and only if w = w ′

and ρ ∼ σ.

Weaving patterns biject with commutation classes. What do directed braid moves
do?

s1 s2 s1 s3

...

1

2

3

4

...

s4 s3

...

-3

2

7

4

...

4 −+
3 −−−−
2 −+
1 + + ++



Weaving Patterns

Lemma

Let w ,w ′ ∈ S̃n, ρ ∈ R(w), and σ ∈ R(w ′). Then Pρ = Pσ if and only if w = w ′

and ρ ∼ σ.

Weaving patterns biject with commutation classes. What do directed braid moves
do?

s1 s2 s1 s3

...

1

2

3

4

...

s4 s3

...

-3

2

7

4

...

4 −+
3 −−−−
2 −+
1 ++ + +



Weaving Patterns

Lemma

Let w ,w ′ ∈ S̃n, ρ ∈ R(w), and σ ∈ R(w ′). Then Pρ = Pσ if and only if w = w ′

and ρ ∼ σ.

Weaving patterns biject with commutation classes. What do directed braid moves
do?

s1 s2 s1 s3

...

1

2

3

4

...

s4 s3

...

-3

2

7

4

...

4 −+
3 −−−−
2 +−
1 ++ + +



Weaving Patterns

Lemma

Let w ,w ′ ∈ S̃n, ρ ∈ R(w), and σ ∈ R(w ′). Then Pρ = Pσ if and only if w = w ′

and ρ ∼ σ.

Weaving patterns biject with commutation classes. What do directed braid moves
do?

Lemma

If ρ, σ ∈ R(w) and σ differs from ρ by a directed braid move, then Pσ differs from
Pρ by a single adjacent swap −+→ +−.



Weaving Patterns

Theorem (Billey-Elias-Liu-C.)

Let w ∈ S̃n, ρ ∈ R(w), and suppose that Pρ(i) contains a contiguous subword
−+ for some i ∈ [n]. Then there exists σ ∈ R(w) such that [ρ] and [σ] differ by a
directed braid move of the form j(j + 1)j → (j + 1)j(j + 1) for some j ∈ [n].

Corollary

For arbitrary w ∈ S̃n, Bn,2(w) has a unique min element [ρ] and a unique max
element [σ] such that Pρ has no contiguous subword +− and Pσ has no
contiguous subword −+.



Weaving Patterns

Theorem (Billey-Elias-Liu-C.)

Let w ∈ S̃n, ρ ∈ R(w), and suppose that Pρ(i) contains a contiguous subword
−+ for some i ∈ [n]. Then there exists σ ∈ R(w) such that [ρ] and [σ] differ by a
directed braid move of the form j(j + 1)j → (j + 1)j(j + 1) for some j ∈ [n].

Proof.
WLOG, assume that the −+ crossings occur in row 2. Then there is a contiguous
subword 1τ1 where τ ∈ {2, 3, 4, . . . , n − 1}∗.

s1 s1

...

i

...

τ

· · ·

If τ contains only one 2, then done. Otherwise, write τ contains a subword 2τ ′2
with τ ′ ∈ {3, 4, . . . , n − 1}∗ and induct.



Weaving Patterns

Theorem (Billey-Elias-Liu-C.)

For all w ∈ S̃n, Bn,2(w) is a ranked poset under single step inclusion of reversal
sets, with unique min element ∅ and unique max element Inv3(w). Elements of
Bn,2(w) biject to maximal chains in [Id,w ] in the weak order.



Enumeration of Bn,k(w)

Theorem (Stanley (1984))

The cardinality of R(w0) for w0 ∈ Sn is equal to the number of standard Young
tableaux of shape (n − 1, n − 2, . . . , 1).

What about Bn,2(w) = C(w0)?

Theorem (Knuth (1992))

The cardinality of C(w0) for w0 ∈ Sn is asymptotically equal to 2Θ(n2).

For comparison, |R(w0)| is asymptotically equal to 2Θ(n2 log n).



Enumeration of Bn,k(w)

Theorem (Ziegler (1993))

For all n ≥ 4, we have

|Bn,n(w0)| = 1,

|Bn,n−1(w0)| = 2,

|Bn,n−2(w0)| = 2n, and

|Bn,n−3(w0)| = 2n + n2n−2 − 2n.

Corollary (Billey-Elias-Liu-C.)

Let w ∈ S̃n, ρ ∈ R(w) and (ai ), (bi ) be the content of Pρ. Then

|Bn,2(w)| ≤
n∏

i=1

(
ai + bi

ai

)
.



Future Work

Generalize Bn,k(w) to infinite biclosed sets (Barkley-Speyer) and infinite
reduced words (Lam-Pylyavskyy).

Generalize weaving patterns to encode elements of Bn,k(w0) for k > 2.

Find a simple criterion that characterizes weaving patterns.

Asymptotics of |Bn,k(w0)|.


