Higher Weak Orders of Affine Permutations

Herman Chau

University of Washington

Joint work with Sara Billey, Ben Elias, and Kevin Liu

March 8, 2023

Definition

The affine symmetric group on *n* elements \widetilde{S}_n consists of bijections $w : \mathbb{Z} \to \mathbb{Z}$ satisfying:

•
$$w(x+n) = w(x)$$
 for all $x \in \mathbb{Z}$, and

•
$$w(1) + w(2) + \cdots + w(n) = \binom{n+1}{2}$$

The window notation of $w \in \widetilde{S}_n$ is $[w(1), \ldots, w(n)]$. E.g., $[-3, 2, 7, 4] \in \widetilde{S}_4$ is the affine permutation:

$$\cdots -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ \cdots$$

$$\downarrow$$

$$\cdots -7 \ -2 \ 3 \ 0 \ -3 \ 2 \ 7 \ 4 \ 1 \ 6 \ 11 \ 8 \ \cdots$$

 \widetilde{S}_n is generated by simple transpositions s_1, \ldots, s_n where

$$s_i = [w(1), \dots, w(i+1), w(i), \dots, w(n)]$$
, for $1 \le i \le n-1$

and

$$s_n = [w(0), w(2), w(3), \ldots, w(n+1)].$$

Definition

A reduced word of $w \in \widetilde{S}_n$ is a minimal length word $i_1 i_2 \cdots i_\ell$ in the alphabet $[n] := \{1, 2, \dots, n\}$ such that $w = s_{i_1} s_{i_2} \cdots s_{i_\ell}$.

A reduced word for $[-3, 2, 7, 4] \in \widetilde{S}_4$ is 121343.

How do we know 121343 is minimal length?

$$\mathsf{Let} \ \binom{\mathbb{Z}}{k} \coloneqq \{ (i_1, \ldots, i_k) \ : \ i_j \in \mathbb{Z} \text{ and } i_1 < i_2 < \cdots < i_k \}.$$

Definition

The *n*-periodic *k*-subsets of \mathbb{Z} is the set $\binom{\mathbb{Z}}{k}_n := \binom{\mathbb{Z}}{k} / \sim_n$ where

$$I \sim_n J \Leftrightarrow I - J = m(n, \ldots, n)$$
 for some $m \in \mathbb{Z}$.

Definition

The **2-inversions** of $w \in \widetilde{S}_n$ is the set:

$$\operatorname{Inv}_2(w) = \left\{ (i,j) : (i,j) \in {\mathbb{Z} \choose k}_n \text{ and } w^{-1}(i) > w^{-1}(j) \right\}.$$

The **length** of $w \in \widetilde{S}_n$ is $\ell(w) \coloneqq |\operatorname{Inv}_2(w)|$.

 $\mathsf{Inv}_2([-3,2,7,4]) = \{(1,2),(1,3),(2,3),(1,4),(1,7),(4,7)\}$

Definition

The (right) weak order on \tilde{S}_n is the transitive closure of the relation

 $v \lessdot w \Leftrightarrow w = vs_i$ and $\ell(w) = \ell(v) + 1$.

There is a natural injection $\iota: S_n \hookrightarrow \widetilde{S}_n$ sending $w \mapsto [w(1), \ldots, w(n)]$.

There is a natural injection $\iota: S_n \hookrightarrow \widetilde{S}_n$ sending $w \mapsto [w(1), \ldots, w(n)]$.

There is a natural injection $\iota: S_n \hookrightarrow \widetilde{S}_n$ sending $w \mapsto [w(1), \ldots, w(n)]$.

Properties of the weak order:

- Ranked poset with rank function $\ell(w)$.
- In S_n , unique min element Id = [1, ..., n] and max element $w_0 = [n, ..., 1]$.
- Maximal saturated chains \leftrightarrow reduced words of w_0 .

Let $\mathcal{R}(w)$ be the reduced words for $w \in \widetilde{S}_n$.

Definition

Reduced words ρ and σ differ by a **commutation move** if σ is obtained from ρ by an adjacent swap $ij \rightarrow ji$ for $i \not\equiv j \pm 1 \pmod{n}$. If ρ and σ differ by a sequence of commutation moves, they are **commutation equivalent**, written $\rho \sim \sigma$.

Definition

Reduced words ρ and σ differ by a **directed braid move** if σ is obtained from ρ by an adjacent swap $i(i+1)i \rightarrow (i+1)i(i+1)$.

The commutation classes of *w* are $C(w) \coloneqq \mathcal{R}(w) / \sim$.

Let $G_2(w)$ be a directed graph with vertices C(w) and directed edges derived from directed braid moves.

 $\mathsf{E.g.} \ w = [3,2,1] \in \widetilde{S}_3.$

Let $G_2(w)$ be a directed graph with vertices C(w) and directed edges derived from directed braid moves.

E.g. $w = [-3, 2, 7, 4] \in \widetilde{S}_4.$ [212434] = [214234] $343 \rightarrow 434$ $121 \rightarrow 212$ [212343] [121434] $121 \rightarrow 212$ $343 \rightarrow 434$ [121343] = [123143]

Theorem (Matsumoto (1964), Tits (1969))

For any $w \in \tilde{S}_n$ and $\rho, \sigma \in \mathcal{R}(w)$, there is a sequence of commutation and braid moves that takes ρ to σ .

In fact, $G_2(w)$ looks like it could be a ranked poset!

Theorem (Manin, Schechtman (1989))

Let $w_0 = [n, n - 1, ..., 1]$. Then $G_2(w_0)$ is the Hasse diagram of a ranked poset with a unique minimal and maximal element.

This ranked poset is the second higher weak order $B_{n,2}(w_0)$. What is the rank function?

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $Inv_2(w)$. E.g. for $[-3, 2, 7, 4] \in \widetilde{S}_4$, we have $121343 \leftrightarrow 12 < 13 < 23 < 14 < 17 < 47$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots$ \downarrow $\cdots -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $Inv_2(w)$. E.g. for $[-3, 2, 7, 4] \in \widetilde{S}_4$, we have $121343 \leftrightarrow 12 < 13 < 23 < 14 < 17 < 47$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots$ \downarrow $\cdots -2 \quad -3 \quad -1 \quad 0 \quad 2 \quad 1 \quad 3 \quad 4 \quad 6 \quad 5 \quad 7 \quad 8 \quad \cdots$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $Inv_2(w)$. E.g. for $[-3, 2, 7, 4] \in \widetilde{S}_4$, we have $121343 \leftrightarrow 12 < 13 < 23 < 14 < 17 < 47$. $\cdots -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ \cdots$ \downarrow $\cdots -2 \ -1 \ -3 \ 0 \ 2 \ 3 \ 1 \ 4 \ 6 \ 7 \ 5 \ 8 \ \cdots$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $Inv_2(w)$. E.g. for $[-3, 2, 7, 4] \in \widetilde{S}_4$, we have $121343 \leftrightarrow 12 < 13 < 23 < 14 < 17 < 47$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots$ \downarrow $\cdots -1 \quad -2 \quad -3 \quad 0 \quad 3 \quad 2 \quad 1 \quad 4 \quad 7 \quad 6 \quad 5 \quad 8 \quad \cdots$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $Inv_2(w)$. E.g. for $[-3, 2, 7, 4] \in \widetilde{S}_4$, we have $121343 \leftrightarrow 12 < 13 < 23 < 14 < 17 < 47$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots$ \downarrow $\cdots -1 \quad -2 \quad 0 \quad -3 \quad 3 \quad 2 \quad 4 \quad 1 \quad 7 \quad 6 \quad 8 \quad 5 \quad \cdots$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $Inv_2(w)$. E.g. for $[-3, 2, 7, 4] \in \widetilde{S}_4$, we have $121343 \leftrightarrow 12 < 13 < 23 < 14 < 17 < 47$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots$ \downarrow $\cdots -7 \quad -2 \quad 0 \quad 3 \quad -3 \quad 2 \quad 4 \quad 7 \quad 1 \quad 6 \quad 8 \quad 11 \quad \cdots$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $Inv_2(w)$. E.g. for $[-3, 2, 7, 4] \in \widetilde{S}_4$, we have $121343 \leftrightarrow 12 < 13 < 23 < 14 < 17 < 47$. $\cdots -3 -2 -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots$ \downarrow $\cdots -7 \quad -2 \quad 3 \quad 0 \quad -3 \quad 2 \quad 7 \quad 4 \quad 1 \quad 6 \quad 11 \quad 8 \quad \cdots$

Definition

The set of *k*-inversions of $w \in \widetilde{S}_n$ is

$$\operatorname{Inv}_k(w) \coloneqq \left\{ (i_1, \ldots, i_k) \in {\mathbb{Z} \choose k}_n : w^{-1}(i_1) > \cdots > w^{-1}(i_k) \right\}.$$

Definition

Let $\rho \in \mathcal{R}(w)$ with associated linear order $(i_1, j_1) <_{\rho} (i_2, j_2) <_{\rho} \cdots <_{\rho} (i_{\ell}, j_{\ell})$. The **reversal set** of ρ is

$$\mathsf{Rev}(
ho)\coloneqq \{(i,j,k)\in\mathsf{Inv}_3(w)\ :\ (j,k)<_
ho\ (i,k)<_
ho\ (i,k)\}.$$

Commutation classes are uniquely defined by their reversal set. The rank function on $B_{n,2}(w_0)$ is $|\text{Rev}(\rho)|$.

Classically only defined for the longest permutation $w_0 = [n, n-1, ..., 1]$ which has inversion set $Inv_k(w_0) = {[n] \choose k}$.

For
$$X \in {\mathbb{Z} \choose k}_n$$
, the **packet** of $X = (x_1, \dots, x_k)$ is $P(X) \coloneqq \{X_1, X_2, \dots, X_k\}$

where $X_i = (x_1, \ldots, \hat{x}_i, \ldots, x_k)$. The lexicographic (lex) order on P(X) is $X_k < \cdots < X_1$ and the antilexicographic (antilex) order is $X_1 < \cdots < X_k$.

Definition

A linear order $<_{\rho}$ on $Inv_k(w_0)$ is **admissible** if $<_{\rho}$ restricts to either the lex or antilex order on any packet P(X) for $X \in Inv_{k+1}(w_0)$. The set of admissible orders on $Inv_k(w_0)$ is denoted $A_{n,k}(w_0)$.

Some linear orders for n = 5, k = 3:

- $\checkmark 123 < 124 < 125 < 134 < 135 < 145 < 234 < 235 < 245 < 345$
- ✗ 123 < 124 < 125 < 134 < 145 < 135 < 234 < 235 < 245 < 345</p>
- $\checkmark 123 < 124 < 125 < 134 < 135 < 145 < 345 < 245 < 235 < 234$

Definition

Two admissible orders $<_{\rho}$ and $<_{\sigma}$ on $Inv_k(w_0)$ are **commutation equivalent** if $<_{\sigma}$ differs from $<_{\rho}$ by a sequence of adjacent swaps $X < Y \rightarrow Y < X$ where X, Y do not lie in any common packet P(Z).

Denote the set of *k*-admissible orders modulo commutation equivalence by $B_{n,k}(w_0) := A_{n,k}(w_0) / \sim$.

Definition

The set of **reversals** of an admissible order $<_{\rho}$ on $Inv_k(w_0)$ is

 $\operatorname{Rev}(<_{\rho}) = \{X \in \operatorname{Inv}_{k+1}(w_0) : <_{\rho} \text{ is the antilex order on } P(X)\}.$

Definition

Two admissible orders $<_{\rho}$ and $<_{\sigma}$ on $Inv_k(w_0)$ differ by a **directed packet flip** if $<_{\sigma}$ is obtained from $<_{\rho}$ by reversing the order on a lex packet P(X) that forms a chain in $<_{\rho}$:

$$X_{k+1} \lessdot_{\rho} \cdots \lessdot_{\rho} X_1 \to X_1 \lessdot_{\sigma} \cdots \lessdot_{\sigma} X_{k+1}.$$

k = 1	k = 2	general k
permutations	reduced words	admissible orders
inversions	reversal sets	reversal sets
simple tranposition	directed braid move	directed packet flip

Let $G_k(w_0)$ be the directed graph with vertex set $B_{n,k}(w_0)$ and edges $[<_{\rho}] \rightarrow [<_{\sigma}]$ if some $<_{\rho'} \in [<_{\rho}]$ and $<_{\sigma'} \in [<_{\sigma}]$ differ by a directed packet flip.

Theorem (Manin, Schechtman (1989))

For $1 \le k \le n$, the following hold:

- Elements of $B_{n,k}(w_0)$ are uniquely determined by their reversal set.
- The directed graph $G_{n,k}(w_0)$ is the Hasse diagram of a partial order \leq on $B_{n,k}(w_0)$, equivalent to single step inclusion of reversal sets.
- The poset (B_{n,k}(w₀), ≤) is a ranked poset with unique min and max elements whose reversal sets are Ø and lnv_{k+1}(w₀) respectively. The rank function is | Rev([<_ρ])|.
- For $2 \le k \le n$, elements of $A_{n,k}(w_0)$ are in bijection with maximal chains in $B_{n,k-1}(w_0)$.

The *k*th higher weak order of w_0 is $(B_{n,k}(w_0), \leq)$.

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Definition

A set $U \subseteq {\binom{[n]}{k}}$ is **consistent** if its intersection $U \cap P(X)$ for all $X \in {\binom{[n]}{k+1}}$ is either a prefix or suffix of P(X) under lex order.

Theorem (Ziegler (1993))

There is a bijection between $(B_{n,k}(w_0), \leq)$ and consistent subsets of $\binom{[n]}{k+1}$ ordered by single step inclusion.

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

 $\binom{[n]}{k}$ bijects with vertices in cyclic arrangement $X_c^{n,n-k}$. e.g. n = 5, k = 3.

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

 $\binom{[n]}{k}$ bijects with vertices in cyclic arrangement $X_c^{n,n-k}$. e.g. n = 5, k = 3.

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Theorem (Ziegler (1993))

There is a bijection between $(B_{n,k}(w_0), \leq)$ and the poset of uniform single element extensions of the affine alternating oriented matroid $C^{n,n-k}$.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Theorem (Thomas (1993))

There is a bijection between $(B_{n,k}(w_0), \leq)$ and subsets U of the k-faces of $[0, 1]^n$ such that T(U) tiles $T([0, 1]^n)$ for some totally positive map $T : \mathbb{R}^n \to \mathbb{R}^k$.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Theorem (Thomas (1993))

There is a bijection between $(B_{n,k}(w_0), \leq)$ and subsets U of the k-faces of $[0,1]^n$ such that T(U) tiles $T([0,1]^n)$ for some totally positive map $T : \mathbb{R}^n \to \mathbb{R}^k$.

 $B_{n,2}(w)$ bijects with rhombic tilings of the symmetric 2*n*-gon. E.g. for n = 4, [123121] corresponds to

Question: Starting from the weak order (\tilde{S}_n, \leq) , what if instead of taking maximal chains from Id to w_0 we took maximal chains up to an arbitrary w?

We need a generalized notion of admissible orders.

Definition

A linear order $<_{\rho}$ on $Inv_k(w)$ is **admissible** if it satisfies the following properties:

- For $X \in Inv_{k+1}(w)$, $<_{\rho}$ restricts to the lex or antilex order on P(X).
- For $X, Y \in {\mathbb{Z} \choose k}_n$ such that $X \leq_P Y$, we have $X <_{\rho} Y$.

Lemma

For $w \in \widetilde{S}_n$, k > 1, and $X \in {\mathbb{Z} \choose k}_n$, we have $X \in Inv_k(w)$ if and only if $P(X) \subseteq Inv_{k-1}(w)$.

Lemma

Let $w \in \widetilde{S}_n$ and $X = [x_1, \dots, x_k] \in {\mathbb{Z} \choose k}_n$. The intersection $P(X) \cap Inv_{k-1}(w)$ is one of the following:

- the empty set \varnothing , or
- a singleton set $\{X_i\}$, or
- a consecutive pair $\{X_i, X_{i+1}\}$ for some $1 \le i \le k-1$, or
- all of P(X).

Definition

Two *n*-periodic *k*-sets $X = [x_1, \ldots, x_k]$ and $Y = [y_1, \ldots, y_k]$ are **congruent modulo** *n*, denoted $X \equiv Y \pmod{n}$ if $x_i \equiv y_i \pmod{n}$ for all $1 \le i \le k$.

Lemma

If
$$X = [x_1, \ldots, x_k], Y = [y_1, \ldots, y_k] \in Inv_k(w)$$
 such that

 ${x_1 \pmod{n}, \ldots, x_k \pmod{n}} = {y_1 \pmod{n}, \ldots, y_k \pmod{n}}$

as sets, then $X \equiv Y \pmod{n}$.

Let
$$v_i^{(k)} \coloneqq (0, \dots, 0, 1, \dots, 1)$$
 with *i* zeroes followed by $k - i$ ones.

Definition

The **permanent poset** $(Inv_k(w), \leq_P)$ is the transitive closure of the relation defined by the following.

- For $X \in {\mathbb{Z} \choose k+1}_n$ with $P(X) \cap \operatorname{Inv}_k(w) = \{X_i, X_{i+1}\}$, we have $X_{i+1} \leq_P X_i$ if k i even and $X_i \leq_P X_{i+1}$ if k i odd.
- For $X, Y \in {\mathbb{Z} \choose k+1}_{n}$ with $Y = X + v_i^{(k)}$, we have $Y \leq_P X$ if k i is even and $X \leq_P Y$ if k i is odd.

Definition

The **permanent poset** $(Inv_k(w), \leq_P)$ is the transitive closure of the relation defined by the following.

- For $X \in {\mathbb{Z} \choose k+1}_n$ with $P(X) \cap \operatorname{Inv}_k(w) = \{X_i, X_{i+1}\}$, we have $X_i \leq_P X_{i+1}$ if k i is odd if $X_{i+1} \leq_P X_i$ if k i is even.
- For $X, Y \in \binom{\mathbb{Z}}{k+1}_{n}$ with $Y = X + v_i^{(k)}$, we have $X \leq_P Y$ if k i is odd and $Y \leq_P X$ if k i is even.

E.g. n = 3, k = 2, i = 1, w = [3, 1, 2], X = (1, 2, 3):

$$Inv_2(w) = \{23, 13\} = \{X_1, X_2\}.$$
$$B_{n,k}(w) = \{23 < 13\} = \{X_1 < X_2\}.$$

Definition

The **permanent poset** $(Inv_k(w), \leq_P)$ is the transitive closure of the relation defined by the following.

- For $X \in {\mathbb{Z} \choose k+1}_n$ with $P(X) \cap \operatorname{Inv}_k(w) = \{X_i, X_{i+1}\}$, we have $X_i \leq_P X_{i+1}$ if k i is odd and $X_{i+1} \leq_P X_i$ if k i is even.
- For $X, Y \in \binom{\mathbb{Z}}{k+1}_n$ with $Y = X + v_i^{(k)}$, we have $X \leq_P Y$ if k i is odd and $Y \leq_P X$ if k i is even.

E.g. n = 3, k = 2, i = 2, w = [2, 3, 1], X = (1, 2, 3):

$$Inv_2(w) = \{13, 12\} = \{X_2, X_3\}.$$
$$B_{n,k}(w) = \{12 < 13\} = \{X_3 < X_2\}.$$

Definition

The **permanent poset** $(Inv_k(w), \leq_P)$ is the transitive closure of the relation defined by the following.

- For $X \in {\mathbb{Z} \choose k+1}_n$ with $P(X) \cap \operatorname{Inv}_k(w) = \{X_i, X_{i+1}\}$, we have $X_i \leq_P X_{i+1}$ if k i is odd and $X_{i+1} \leq_P X_i$ if k i is even.
- For $X, Y \in \binom{\mathbb{Z}}{k+1}_{p}$ with $Y = X + v_i^{(k)}$, we have $X \leq_P Y$ if k i is odd and $Y \leq_P X$ if k i is even.

E.g. n = 3, k = 3, i = 1, w = [6, 2, -2]:

 $\mathsf{Inv}_2(w) = \{12, 13, 23, 15, 16, 26\} \quad \mathsf{Inv}_3(w) = \{123, 126, 156, 159\}.$

Definition

A linear order $<_{\rho}$ on $Inv_k(w)$ is **admissible** if it satisfies the following properties:

- For $X \in Inv_{k+1}(w)$, $<_{\rho}$ restricts to the lex or antilex order on P(X).
- For $X, Y \in {\mathbb{Z} \choose k}_n$ such that $X \leq_P Y$, we have $X <_{\rho} Y$.

Definition

The set of **reversals** of an admissible order $<_{\rho}$ on $Inv_k(w)$ is

 $\operatorname{Rev}(<_{\rho}) = \{X \in \operatorname{Inv}_{k+1}(w) : <_{\rho} \text{ is the antilex order on } P(X)\}.$

The set of admissible orders on $Inv_k(w)$ is denoted $A_{n,k}(w)$. The set of reversal sets of $A_{n,k}(w)$ is denoted $B_{n,k}(w)$.

Theorem (Billey-Elias-Liu-C.)

For all $w \in \widetilde{S}_n$, $B_{n,2}(w)$ is a ranked poset under single step inclusion of reversal sets, with unique min element \emptyset and unique max element $Inv_3(w)$. Elements of $B_{n,2}(w)$ biject to maximal chains in [Id, w] in the weak order.

What about general k? We conjectured and verified computationally for $n \le 6$ and $\ell(w) \le 15$.

Conjecture

For all $w \in \widetilde{S}_n$ and $2 \le k \le n$, $B_{n,k}(w)$ is a ranked poset under single step inclusion of reversal sets with unique min element \emptyset and unique max element $Inv_{k+1}(w)$. Maximal chains of $B_{n,k}(w)$ biject with admissible orders in $A_{n,k+1}(w)$.

We can visualize reduced words via wiring diagrams.

E.g. the wiring diagram of 121343 $\in \mathcal{R}([-3,2,7,4])$ is:

Definition

For $w \in \widetilde{S}_n$, the **weaving pattern** associated to a reduced word $\rho \in \mathcal{R}(w)$ is a function $P_{\rho} : [n] \to \{-1, +1\}^*$ such that $P_{\rho}(i)$ is the sequence of up (+1) crossings and down (-1) crossings of the wire labeled *i*.

Definition

For $w \in \widetilde{S}_n$, the **weaving pattern** associated to a reduced word $\rho \in \mathcal{R}(w)$ is a function $P_{\rho} : [n] \to \{-1, +1\}^*$ such that $P_{\rho}(i)$ is the sequence of up (+1) crossings and down (-1) crossings of the wire labeled *i*.

Definition

The **length** of a weaving pattern P_{ρ} for $\rho \in \mathcal{R}(w)$ is $\ell(P_{\rho}) \coloneqq \ell(w)$.

Definition

The **content** of a weaving pattern P_{ρ} is a pair of sequences (a_i) and (b_i) where a_i is the number of +1's in $P_{\rho}(i)$ and b_i is the number of -1's in $P_{\rho}(i)$.

Lemma

Let $w \in \widetilde{S}_n$, $\rho \in \mathcal{R}(w)$, and $(a_i), (b_i)$ be the content of P_{ρ} . Then the following hold:

• For all
$$i \in [n]$$
, $w^{-1}(i) = i + a_i - b_i$

•
$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i = \ell(P_{\rho})$$

• If
$$\sigma \in \mathcal{R}(w)$$
 and $\sigma \sim
ho$ then $P_{\sigma} = P_{
ho}$

Open Problem: Given an arbitrary function $P : [n] \to \{-1, 1\}^*$, decide if $P = P_{\rho}$ for some reduced word ρ .

Lemma

Let $w, w' \in \widetilde{S}_n$, $\rho \in \mathcal{R}(w)$, and $\sigma \in \mathcal{R}(w')$. Then $P_{\rho} = P_{\sigma}$ if and only if w = w' and $\rho \sim \sigma$.

Weaving patterns biject with commutation classes. What do directed braid moves do?

Lemma

Let $w, w' \in \widetilde{S}_n$, $\rho \in \mathcal{R}(w)$, and $\sigma \in \mathcal{R}(w')$. Then $P_{\rho} = P_{\sigma}$ if and only if w = w'and $\rho \sim \sigma$.

Weaving patterns biject with commutation classes. What do directed braid moves do?

Lemma

Let $w, w' \in \widetilde{S}_n$, $\rho \in \mathcal{R}(w)$, and $\sigma \in \mathcal{R}(w')$. Then $P_{\rho} = P_{\sigma}$ if and only if w = w' and $\rho \sim \sigma$.

Weaving patterns biject with commutation classes. What do directed braid moves do?

Lemma

Let $w, w' \in \widetilde{S}_n$, $\rho \in \mathcal{R}(w)$, and $\sigma \in \mathcal{R}(w')$. Then $P_{\rho} = P_{\sigma}$ if and only if w = w' and $\rho \sim \sigma$.

Weaving patterns biject with commutation classes. What do directed braid moves do?

Lemma

If $\rho, \sigma \in \mathcal{R}(w)$ and σ differs from ρ by a directed braid move, then P_{σ} differs from P_{ρ} by a single adjacent swap $-+ \rightarrow +-$.

Theorem (Billey-Elias-Liu-C.)

Let $w \in \widetilde{S}_n$, $\rho \in \mathcal{R}(w)$, and suppose that $P_{\rho}(i)$ contains a contiguous subword -+ for some $i \in [n]$. Then there exists $\sigma \in \mathcal{R}(w)$ such that $[\rho]$ and $[\sigma]$ differ by a directed braid move of the form $j(j+1)j \to (j+1)j(j+1)$ for some $j \in [n]$.

Corollary

For arbitrary $w \in \tilde{S}_n$, $B_{n,2}(w)$ has a unique min element $[\rho]$ and a unique max element $[\sigma]$ such that P_{ρ} has no contiguous subword +- and P_{σ} has no contiguous subword -+.

Theorem (Billey-Elias-Liu-C.)

Let $w \in \widetilde{S}_n$, $\rho \in \mathcal{R}(w)$, and suppose that $P_{\rho}(i)$ contains a contiguous subword -+ for some $i \in [n]$. Then there exists $\sigma \in \mathcal{R}(w)$ such that $[\rho]$ and $[\sigma]$ differ by a directed braid move of the form $j(j+1)j \to (j+1)j(j+1)$ for some $j \in [n]$.

Proof.

WLOG, assume that the -+ crossings occur in row 2. Then there is a contiguous subword $1\tau 1$ where $\tau \in \{2, 3, 4, \dots, n-1\}^*$.

If τ contains only one 2, then done. Otherwise, write τ contains a subword $2\tau'2$ with $\tau' \in \{3, 4, \dots, n-1\}^*$ and induct.

Theorem (Billey-Elias-Liu-C.)

For all $w \in \widetilde{S}_n$, $B_{n,2}(w)$ is a ranked poset under single step inclusion of reversal sets, with unique min element \emptyset and unique max element $Inv_3(w)$. Elements of $B_{n,2}(w)$ biject to maximal chains in [Id, w] in the weak order.

Enumeration of $B_{n,k}(w)$

Theorem (Stanley (1984))

The cardinality of $\mathcal{R}(w_0)$ for $w_0 \in S_n$ is equal to the number of standard Young tableaux of shape (n - 1, n - 2, ..., 1).

What about $B_{n,2}(w) = C(w_0)$?

Theorem (Knuth (1992))

The cardinality of $C(w_0)$ for $w_0 \in S_n$ is asymptotically equal to $2^{\Theta(n^2)}$.

For comparison, $|\mathcal{R}(w_0)|$ is asymptotically equal to $2^{\Theta(n^2 \log n)}$.

Enumeration of $B_{n,k}(w)$

Theorem (Ziegler (1993))

For all $n \ge 4$, we have

- $|B_{n,n}(w_0)| = 1$,
- $|B_{n,n-1}(w_0)| = 2$,
- $|B_{n,n-2}(w_0)| = 2n$, and
- $|B_{n,n-3}(w_0)| = 2^n + n2^{n-2} 2n$.

Corollary (Billey-Elias-Liu-C.)

Let $w \in \widetilde{S}_n$, $\rho \in \mathcal{R}(w)$ and $(a_i), (b_i)$ be the content of P_{ρ} . Then

$$|B_{n,2}(w)| \leq \prod_{i=1}^n \binom{a_i+b_i}{a_i}.$$

Future Work

- Generalize B_{n,k}(w) to infinite biclosed sets (Barkley-Speyer) and infinite reduced words (Lam-Pylyavskyy).
- Generalize weaving patterns to encode elements of $B_{n,k}(w_0)$ for k > 2.
- Find a simple criterion that characterizes weaving patterns.
- Asymptotics of $|B_{n,k}(w_0)|$.