Higher Weak Orders of Affine Permutations

Herman Chau
University of Washington

Joint work with Sara Billey, Ben Elias, and Kevin Liu

March 8, 2023

Affine Symmetric Group \widetilde{S}_{n}

Definition

The affine symmetric group on n elements \widetilde{S}_{n} consists of bijections $w: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying:

- $w(x+n)=w(x)$ for all $x \in \mathbb{Z}$, and
- $w(1)+w(2)+\cdots+w(n)=\binom{n+1}{2}$

The window notation of $w \in \widetilde{S}_{n}$ is $[w(1), \ldots, w(n)]$. E.g., $[-3,2,7,4] \in \widetilde{S}_{4}$ is the affine permutation:

\cdots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
\cdots	-7	-2	3	0	-3	2	7	4	1	6	11	8	\cdots

Affine Symmetric Group \widetilde{S}_{n}

\widetilde{S}_{n} is generated by simple transpositions s_{1}, \ldots, s_{n} where

$$
s_{i}=[w(1), \ldots, w(i+1), w(i), \ldots, w(n)], \text { for } 1 \leq i \leq n-1
$$

and

$$
s_{n}=[w(0), w(2), w(3), \ldots, w(n+1)] .
$$

Definition

A reduced word of $w \in \widetilde{S}_{n}$ is a minimal length word $i_{1} i_{2} \cdots i_{\ell}$ in the alphabet $[n]:=\{1,2, \ldots, n\}$ such that $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}$.

A reduced word for $[-3,2,7,4] \in \widetilde{S}_{4}$ is 121343.
How do we know 121343 is minimal length?

Affine Symmetric Group \widetilde{S}_{n}
Let $\binom{\mathbb{Z}}{k}:=\left\{\left(i_{1}, \ldots, i_{k}\right): i_{j} \in \mathbb{Z}\right.$ and $\left.i_{1}<i_{2}<\cdots<i_{k}\right\}$.

Definition

The n-periodic k-subsets of \mathbb{Z} is the set $\binom{\mathbb{Z}}{k}_{n}:=\binom{\mathbb{Z}}{k} / \sim_{n}$ where

$$
I \sim_{n} J \Leftrightarrow I-J=m(n, \ldots, n) \text { for some } m \in \mathbb{Z} .
$$

Definition

The 2-inversions of $w \in \widetilde{S}_{n}$ is the set:

$$
\operatorname{lnv}_{2}(w)=\left\{(i, j):(i, j) \in\binom{\mathbb{Z}}{k}_{n} \text { and } w^{-1}(i)>w^{-1}(j)\right\} .
$$

The length of $w \in \widetilde{S}_{n}$ is $\ell(w):=\left|\operatorname{lnv}_{2}(w)\right|$.

$$
\operatorname{lnv}_{2}([-3,2,7,4])=\{(1,2),(1,3),(2,3),(1,4),(1,7),(4,7)\}
$$

Affine Symmetric Group \widetilde{S}_{n}

Definition

The (right) weak order on \widetilde{S}_{n} is the transitive closure of the relation

$$
v \lessdot w \Leftrightarrow w=v s_{i} \text { and } \ell(w)=\ell(v)+1 .
$$

Affine Symmetric Group \widetilde{S}_{n}

There is a natural injection $\iota: S_{n} \hookrightarrow \widetilde{S}_{n}$ sending $w \mapsto[w(1), \ldots, w(n)]$.

Affine Symmetric Group \widetilde{S}_{n}

There is a natural injection $\iota: S_{n} \hookrightarrow \widetilde{S}_{n}$ sending $w \mapsto[w(1), \ldots, w(n)]$.

Affine Symmetric Group \widetilde{S}_{n}

There is a natural injection $\iota: S_{n} \hookrightarrow \widetilde{S}_{n}$ sending $w \mapsto[w(1), \ldots, w(n)]$.

Affine Symmetric Group \widetilde{S}_{n}

Properties of the weak order:

- Ranked poset with rank function $\ell(w)$.
- In S_{n}, unique min element Id $=[1, \ldots, n]$ and max element $w_{0}=[n, \ldots, 1]$.
- Maximal saturated chains \leftrightarrow reduced words of w_{0}.

Higher Weak Order $(k=2)$

Let $\mathcal{R}(w)$ be the reduced words for $w \in \widetilde{S}_{n}$.

Definition

Reduced words ρ and σ differ by a commutation move if σ is obtained from ρ by an adjacent swap $i j \rightarrow j i$ for $i \not \equiv j \pm 1(\bmod n)$. If ρ and σ differ by a sequence of commutation moves, they are commutation equivalent, written $\rho \sim \sigma$.

Definition

Reduced words ρ and σ differ by a directed braid move if σ is obtained from ρ by an adjacent swap $i(i+1) i \rightarrow(i+1) i(i+1)$.

The commutation classes of w are $\mathcal{C}(w):=\mathcal{R}(w) / \sim$.

Higher Weak Order $(k=2)$

Let $G_{2}(w)$ be a directed graph with vertices $\mathcal{C}(w)$ and directed edges derived from directed braid moves.

$$
\text { E.g. } w=[3,2,1] \in \widetilde{S}_{3} \text {. }
$$

[212]

[121]

Higher Weak Order $(k=2)$

Let $G_{2}(w)$ be a directed graph with vertices $\mathcal{C}(w)$ and directed edges derived from directed braid moves.
E.g. $w=[-3,2,7,4] \in \widetilde{S}_{4}$.

Higher Weak Order $(k=2)$

Theorem (Matsumoto (1964), Tits (1969))

For any $w \in \widetilde{S}_{n}$ and $\rho, \sigma \in \mathcal{R}(w)$, there is a sequence of commutation and braid moves that takes ρ to σ.

In fact, $G_{2}(w)$ looks like it could be a ranked poset!

Theorem (Manin, Schechtman (1989))

Let $w_{0}=[n, n-1, \ldots, 1]$. Then $G_{2}\left(w_{0}\right)$ is the Hasse diagram of a ranked poset with a unique minimal and maximal element.

This ranked poset is the second higher weak order $B_{n, 2}\left(w_{0}\right)$. What is the rank function?

Higher Weak Order $(k=2)$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $\operatorname{lnv}_{2}(w)$.
E.g. for $[-3,2,7,4] \in \widetilde{S}_{4}$, we have $121343 \leftrightarrow 12<13<23<14<17<47$.

Higher Weak Order $(k=2)$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $\operatorname{lnv}_{2}(w)$.
E.g. for $[-3,2,7,4] \in \widetilde{S}_{4}$, we have $121343 \leftrightarrow 12<13<23<14<17<47$.

Higher Weak Order $(k=2)$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $\operatorname{lnv}_{2}(w)$.
E.g. for $[-3,2,7,4] \in \widetilde{S}_{4}$, we have $121343 \leftrightarrow 12<13<23<14<17<47$.

Higher Weak Order $(k=2)$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $\operatorname{lnv}_{2}(w)$.
E.g. for $[-3,2,7,4] \in \widetilde{S}_{4}$, we have $121343 \leftrightarrow 12<13<23<14<17<47$.

$$
\begin{array}{ccccccccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\
& & & & & & \downarrow & & & & & & \\
-1 & -2 & -3 & 0 & 3 & 2 & 1 & 4 & 7 & 6 & 5 & 8 & \cdots
\end{array}
$$

Higher Weak Order $(k=2)$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $\operatorname{lnv}_{2}(w)$.
E.g. for $[-3,2,7,4] \in \widetilde{S}_{4}$, we have $121343 \leftrightarrow 12<13<23<14<17<47$.

Higher Weak Order $(k=2)$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $\operatorname{lnv}_{2}(w)$.
E.g. for $[-3,2,7,4] \in \widetilde{S}_{4}$, we have $121343 \leftrightarrow 12<13<23<14<17<47$.

Higher Weak Order $(k=2)$

Reduced words $\rho \in \mathcal{R}(w)$ biject to linear orders on the 2-inversion set $\operatorname{lnv}_{2}(w)$.
E.g. for $[-3,2,7,4] \in \widetilde{S}_{4}$, we have $121343 \leftrightarrow 12<13<23<14<17<47$.

Higher Weak Order $(k=2)$

Definition

The set of k-inversions of $w \in \widetilde{S}_{n}$ is

$$
\operatorname{lnv}_{k}(w):=\left\{\left(i_{1}, \ldots, i_{k}\right) \in\binom{\mathbb{Z}}{k}_{n}: w^{-1}\left(i_{1}\right)>\cdots>w^{-1}\left(i_{k}\right)\right\} .
$$

Definition

Let $\rho \in \mathcal{R}(w)$ with associated linear order $\left(i_{1}, j_{1}\right)<_{\rho}\left(i_{2}, j_{2}\right)<_{\rho} \cdots<_{\rho}\left(i_{\ell}, j_{\ell}\right)$. The reversal set of ρ is

$$
\operatorname{Rev}(\rho):=\left\{(i, j, k) \in \operatorname{Inv}_{3}(w):(j, k)<_{\rho}(i, k)<_{\rho}(i, k)\right\} .
$$

Commutation classes are uniquely defined by their reversal set. The rank function on $B_{n, 2}\left(w_{0}\right)$ is $|\operatorname{Rev}(\rho)|$.

Higher Weak Order $(k=2)$

Manin-Schechtman Higher Weak Orders

Classically only defined for the longest permutation $w_{0}=[n, n-1, \ldots, 1]$ which has inversion set $\operatorname{lnv}_{k}\left(w_{0}\right)=\binom{[n]}{k}$.

For $X \in\binom{\mathbb{Z}}{k}_{n}$, the packet of $X=\left(x_{1}, \ldots, x_{k}\right)$ is

$$
P(X):=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}
$$

where $X_{i}=\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{k}\right)$. The lexicographic (lex) order on $P(X)$ is $X_{k}<\cdots<X_{1}$ and the antilexicographic (antilex) order is $X_{1}<\cdots<X_{k}$.

Definition

A linear order $<_{\rho}$ on $\operatorname{lnv}_{k}\left(w_{0}\right)$ is admissible if $<_{\rho}$ restricts to either the lex or antilex order on any packet $P(X)$ for $X \in \operatorname{Inv}_{k+1}\left(w_{0}\right)$. The set of admissible orders on $\operatorname{Inv}_{k}\left(w_{0}\right)$ is denoted $A_{n, k}\left(w_{0}\right)$.

Manin-Schechtman Higher Weak Orders

Some linear orders for $n=5, k=3$:

$$
\begin{array}{ll}
\text { ل } & 123<124<125<134<135<145<234<235<245<345 \\
\times & 123<124<125<134<145<135<234<235<245<345 \\
\text { (} & 123<124<125<134<135<145<345<245<235<234
\end{array}
$$

Definition

Two admissible orders $<_{\rho}$ and $<_{\sigma}$ on $\operatorname{lnv}_{k}\left(w_{0}\right)$ are commutation equivalent if $<_{\sigma}$ differs from $<_{\rho}$ by a sequence of adjacent swaps $X<Y \rightarrow Y<X$ where X, Y do not lie in any common packet $P(Z)$.

Denote the set of k-admissible orders modulo commutation equivalence by $B_{n, k}\left(w_{0}\right):=A_{n, k}\left(w_{0}\right) / \sim$.

Manin-Schechtman Higher Weak Orders

Definition

The set of reversals of an admissible order $<_{\rho}$ on $\operatorname{Inv}_{k}\left(w_{0}\right)$ is

$$
\operatorname{Rev}\left(<_{\rho}\right)=\left\{X \in \ln _{k+1}\left(w_{0}\right):<_{\rho} \text { is the antilex order on } P(X)\right\} .
$$

Definition

Two admissible orders $<_{\rho}$ and $<_{\sigma}$ on $\operatorname{Inv}_{k}\left(w_{0}\right)$ differ by a directed packet flip if $<_{\sigma}$ is obtained from $<_{\rho}$ by reversing the order on a lex packet $P(X)$ that forms a chain in $<_{\rho}$:

$$
X_{k+1} \lessdot_{\rho} \cdots \lessdot_{\rho} X_{1} \rightarrow X_{1} \lessdot_{\sigma} \cdots \lessdot_{\sigma} X_{k+1} .
$$

Manin-Schechtman Higher Weak Orders

$k=1$	$k=2$	general k
permutations	reduced words	admissible orders
inversions	reversal sets	reversal sets
simple tranposition	directed braid move	directed packet flip

Manin-Schechtman Higher Weak Orders

Let $G_{k}\left(w_{0}\right)$ be the directed graph with vertex set $B_{n, k}\left(w_{0}\right)$ and edges $\left[<_{\rho}\right] \rightarrow\left[<_{\sigma}\right]$ if some $<_{\rho^{\prime}} \in\left[<_{\rho}\right]$ and $<_{\sigma^{\prime}} \in\left[<_{\sigma}\right]$ differ by a directed packet flip.

Theorem (Manin, Schechtman (1989))

For $1 \leq k \leq n$, the following hold:

- Elements of $B_{n, k}\left(w_{0}\right)$ are uniquely determined by their reversal set.
- The directed graph $G_{n, k}\left(w_{0}\right)$ is the Hasse diagram of a partial order \leq on $B_{n, k}\left(w_{0}\right)$, equivalent to single step inclusion of reversal sets.
- The poset $\left(B_{n, k}\left(w_{0}\right), \leq\right)$ is a ranked poset with unique min and max elements whose reversal sets are \varnothing and $\operatorname{lnv}_{k+1}\left(w_{0}\right)$ respectively. The rank function is $\left|\operatorname{Rev}\left(\left[<_{\rho}\right]\right)\right|$.
- For $2 \leq k \leq n$, elements of $A_{n, k}\left(w_{0}\right)$ are in bijection with maximal chains in $B_{n, k-1}\left(w_{0}\right)$.

The k th higher weak order of w_{0} is $\left(B_{n, k}\left(w_{0}\right), \leq\right)$.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Definition

A set $U \subseteq\binom{[n]}{k}$ is consistent if its intersection $U \cap P(X)$ for all $X \in\binom{[n]}{k+1}$ is either a prefix or suffix of $P(X)$ under lex order.

Theorem (Ziegler (1993))

There is a bijection between $\left(B_{n, k}\left(w_{0}\right), \leq\right)$ and consistent subsets of $\binom{[n]}{k+1}$ ordered by single step inclusion.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.
$\binom{[n]}{k}$ bijects with vertices in cyclic arrangement $X_{c}^{n, n-k}$. e.g. $n=5, k=3$.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.
$\binom{[n]}{k}$ bijects with vertices in cyclic arrangement $X_{c}^{n, n-k}$. e.g. $n=5, k=3$.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Theorem (Ziegler (1993))

There is a bijection between $\left(B_{n, k}\left(w_{0}\right), \leq\right)$ and the poset of uniform single element extensions of the affine alternating oriented matroid $C^{n, n-k}$.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Theorem (Thomas (1993))

There is a bijection between $\left(B_{n, k}\left(w_{0}\right), \leq\right)$ and subsets U of the k-faces of $[0,1]^{n}$ such that $T(U)$ tiles $T\left([0,1]^{n}\right)$ for some totally positive map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$.

Manin-Schechtman Higher Weak Orders

Other equivalent characterizations: consistent sets, oriented matroid extensions, and zonotopal tilings.

Theorem (Thomas (1993))

There is a bijection between $\left(B_{n, k}\left(w_{0}\right), \leq\right)$ and subsets U of the k-faces of $[0,1]^{n}$ such that $T(U)$ tiles $T\left([0,1]^{n}\right)$ for some totally positive map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$.
$B_{n, 2}(w)$ bijects with rhombic tilings of the symmetric $2 n$-gon. E.g. for $n=4$, [123121] corresponds to

Higher Weak Orders in \widetilde{S}_{n}

Question: Starting from the weak order $\left(\widetilde{S}_{n}, \leq\right)$, what if instead of taking maximal chains from Id to w_{0} we took maximal chains up to an arbitrary w ?

We need a generalized notion of admissible orders.

Definition

A linear order $<_{\rho}$ on $\operatorname{lnv}_{k}(w)$ is admissible if it satisfies the following properties:

- For $X \in \operatorname{lnv}_{k+1}(w),<_{\rho}$ restricts to the lex or antilex order on $P(X)$.
- For $X, Y \in\binom{\mathbb{Z}}{k}_{n}$ such that $X \leq_{p} Y$, we have $X<_{\rho} Y$.

Higher Weak Orders in \widetilde{S}_{n}

Lemma

For $w \in \widetilde{S}_{n}, k>1$, and $X \in\binom{\mathbb{Z}}{k}_{n}$, we have $X \in \operatorname{lnv}_{k}(w)$ if and only if $P(X) \subseteq \operatorname{lnv}_{k-1}(w)$.

Lemma

Let $w \in \widetilde{S}_{n}$ and $X=\left[x_{1}, \ldots, x_{k}\right] \in\binom{\mathbb{Z}}{k}_{n}$. The intersection $P(X) \cap \operatorname{lnv}_{k-1}(w)$ is one of the following:

- the empty set \varnothing, or
- a singleton set $\left\{X_{i}\right\}$, or
- a consecutive pair $\left\{X_{i}, X_{i+1}\right\}$ for some $1 \leq i \leq k-1$, or
- all of $P(X)$.

Higher Weak Orders in \widetilde{S}_{n}

Definition

Two n-periodic k-sets $X=\left[x_{1}, \ldots, x_{k}\right]$ and $Y=\left[y_{1}, \ldots, y_{k}\right]$ are congruent modulo n, denoted $X \equiv Y(\bmod n)$ if $x_{i} \equiv y_{i}(\bmod n)$ for all $1 \leq i \leq k$.

Lemma

If $X=\left[x_{1}, \ldots, x_{k}\right], Y=\left[y_{1}, \ldots, y_{k}\right] \in \operatorname{Inv}_{k}(w)$ such that

$$
\left\{x_{1}(\bmod n), \ldots, x_{k}(\bmod n)\right\}=\left\{y_{1}(\bmod n), \ldots, y_{k}(\bmod n)\right\}
$$

as sets, then $X \equiv Y(\bmod n)$.

Higher Weak Orders in \widetilde{S}_{n}

Let $v_{i}^{(k)}:=(0, \ldots, 0,1, \ldots, 1)$ with i zeroes followed by $k-i$ ones.

Definition

The permanent poset $\left(\operatorname{lnv}_{k}(w), \leq_{p}\right)$ is the transitive closure of the relation defined by the following.

- For $X \in\binom{\mathbb{Z}}{k+1}_{n}$ with $P(X) \cap \operatorname{Inv}_{k}(w)=\left\{X_{i}, X_{i+1}\right\}$, we have $X_{i+1} \leq_{p} X_{i}$ if $k-i$ even and $X_{i} \leq_{p} X_{i+1}$ if $k-i$ odd.
- For $X, Y \in\binom{\mathbb{Z}}{k+1}_{n}$ with $Y=X+v_{i}^{(k)}$, we have $Y \leq_{p} X$ if $k-i$ is even and $X \leq_{p} Y$ if $k-i$ is odd.

Higher Weak Orders in \widetilde{S}_{n}

Definition

The permanent poset $\left(\operatorname{lnv}_{k}(w), \leq_{p}\right)$ is the transitive closure of the relation defined by the following.

- For $X \in\binom{\mathbb{Z}}{k+1}_{n}$ with $P(X) \cap \operatorname{Inv}_{k}(w)=\left\{X_{i}, X_{i+1}\right\}$, we have $X_{i} \leq_{p} X_{i+1}$ if $k-i$ is odd if $X_{i+1} \leq_{P} X_{i}$ if $k-i$ is even.
- For $X, Y \in\binom{\mathbb{Z}}{k+1}_{n}$ with $Y=X+v_{i}^{(k)}$, we have $X \leq_{p} Y$ if $k-i$ is odd and $Y \leq_{p} X$ if $k-i$ is even.
E.g. $n=3, k=2, i=1, w=[3,1,2], X=(1,2,3)$:

$$
\begin{gathered}
\operatorname{lnv}_{2}(w)=\{23,13\}=\left\{X_{1}, X_{2}\right\} . \\
B_{n, k}(w)=\{23<13\}=\left\{X_{1}<X_{2}\right\} .
\end{gathered}
$$

Higher Weak Orders in \widetilde{S}_{n}

Definition

The permanent poset $\left(\operatorname{lnv}_{k}(w), \leq_{p}\right)$ is the transitive closure of the relation defined by the following.

- For $X \in\binom{\mathbb{Z}}{k+1}_{n}$ with $P(X) \cap \operatorname{lnv}_{k}(w)=\left\{X_{i}, X_{i+1}\right\}$, we have $X_{i} \leq_{P} X_{i+1}$ if $k-i$ is odd and $X_{i+1} \leq_{p} X_{i}$ if $k-i$ is even.
- For $X, Y \in\binom{\mathbb{Z}}{k+1}_{n}$ with $Y=X+v_{i}^{(k)}$, we have $X \leq_{p} Y$ if $k-i$ is odd and $Y \leq_{p} X$ if $k-i$ is even.
E.g. $n=3, k=2, i=2, w=[2,3,1], X=(1,2,3)$:

$$
\begin{gathered}
\operatorname{lnv}_{2}(w)=\{13,12\}=\left\{X_{2}, X_{3}\right\} . \\
B_{n, k}(w)=\{12<13\}=\left\{X_{3}<X_{2}\right\} .
\end{gathered}
$$

Higher Weak Orders in \widetilde{S}_{n}

Definition

The permanent poset $\left(\operatorname{lnv}_{k}(w), \leq_{p}\right)$ is the transitive closure of the relation defined by the following.

- For $X \in\binom{\mathbb{Z}}{k+1}_{n}$ with $P(X) \cap \operatorname{lnv}_{k}(w)=\left\{X_{i}, X_{i+1}\right\}$, we have $X_{i} \leq_{p} X_{i+1}$ if $k-i$ is odd and $X_{i+1} \leq_{p} X_{i}$ if $k-i$ is even.
- For $X, Y \in\binom{\mathbb{Z}}{k+1}_{n}$ with $Y=X+v_{i}^{(k)}$, we have $X \leq_{p} Y$ if $k-i$ is odd and $Y \leq_{P} X$ if $k-i$ is even.
E.g. $n=3, k=3, i=1, w=[6,2,-2]$:

$$
\operatorname{lnv}_{2}(w)=\{12,13,23,15,16,26\} \quad \operatorname{lnv}_{3}(w)=\{123,126,156,159\} .
$$

Higher Weak Orders in \widetilde{S}_{n}

Definition

A linear order $<_{\rho}$ on $\operatorname{lnv}_{k}(w)$ is admissible if it satisfies the following properties:

- For $X \in \operatorname{lnv}_{k+1}(w),<_{\rho}$ restricts to the lex or antilex order on $P(X)$.
- For $X, Y \in\binom{\mathbb{Z}}{k}_{n}$ such that $X \leq_{p} Y$, we have $X<_{\rho} Y$.

Definition

The set of reversals of an admissible order $<_{\rho}$ on $\operatorname{Inv}_{k}(w)$ is

$$
\operatorname{Rev}\left(<_{\rho}\right)=\left\{X \in \operatorname{lnv}_{k+1}(w):<_{\rho} \text { is the antilex order on } P(X)\right\} .
$$

The set of admissible orders on $\operatorname{Inv}_{k}(w)$ is denoted $A_{n, k}(w)$. The set of reversal sets of $A_{n, k}(w)$ is denoted $B_{n, k}(w)$.

Higher Weak Orders in \widetilde{S}_{n}

Theorem (Billey-Elias-Liu-C.)

For all $w \in \widetilde{S}_{n}, B_{n, 2}(w)$ is a ranked poset under single step inclusion of reversal sets, with unique min element \varnothing and unique max element $\operatorname{lnv}_{3}(w)$. Elements of $B_{n, 2}(w)$ biject to maximal chains in $[\mathrm{ld}, w]$ in the weak order.

What about general k ? We conjectured and verified computationally for $n \leq 6$ and $\ell(w) \leq 15$.

Conjecture

For all $w \in \widetilde{S}_{n}$ and $2 \leq k \leq n, B_{n, k}(w)$ is a ranked poset under single step inclusion of reversal sets with unique min element \varnothing and unique max element $\operatorname{lnv}_{k+1}(w)$. Maximal chains of $B_{n, k}(w)$ biject with admissible orders in $A_{n, k+1}(w)$.

Weaving Patterns

We can visualize reduced words via wiring diagrams.
E.g. the wiring diagram of $121343 \in \mathcal{R}([-3,2,7,4])$ is:

Definition

For $w \in \widetilde{S}_{n}$, the weaving pattern associated to a reduced word $\rho \in \mathcal{R}(w)$ is a function $P_{\rho}:[n] \rightarrow\{-1,+1\}^{*}$ such that $P_{\rho}(i)$ is the sequence of up $(+1)$ crossings and down (-1) crossings of the wire labeled i.

Weaving Patterns

Definition

For $w \in \widetilde{S}_{n}$, the weaving pattern associated to a reduced word $\rho \in \mathcal{R}(w)$ is a function $P_{\rho}:[n] \rightarrow\{-1,+1\}^{*}$ such that $P_{\rho}(i)$ is the sequence of up $(+1)$ crossings and down (-1) crossings of the wire labeled i.

Weaving Patterns

Definition

The length of a weaving pattern P_{ρ} for $\rho \in \mathcal{R}(w)$ is $\ell\left(P_{\rho}\right):=\ell(w)$.

Definition

The content of a weaving pattern P_{ρ} is a pair of sequences $\left(a_{i}\right)$ and $\left(b_{i}\right)$ where a_{i} is the number of +1 's in $P_{\rho}(i)$ and b_{i} is the number of -1 's in $P_{\rho}(i)$.

Lemma

Let $w \in \widetilde{S}_{n}, \rho \in \mathcal{R}(w)$, and $\left(a_{i}\right),\left(b_{i}\right)$ be the content of P_{ρ}. Then the following hold:

- For all $i \in[n], w^{-1}(i)=i+a_{i}-b_{i}$
- $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}=\ell\left(P_{\rho}\right)$
- If $\sigma \in \mathcal{R}(w)$ and $\sigma \sim \rho$ then $P_{\sigma}=P_{\rho}$.

Open Problem: Given an arbitrary function $P:[n] \rightarrow\{-1,1\}^{*}$, decide if $P=P_{\rho}$ for some reduced word ρ.

Weaving Patterns

Lemma

Let $w, w^{\prime} \in \widetilde{S}_{n}, \rho \in \mathcal{R}(w)$, and $\sigma \in \mathcal{R}\left(w^{\prime}\right)$. Then $P_{\rho}=P_{\sigma}$ if and only if $w=w^{\prime}$ and $\rho \sim \sigma$.

Weaving patterns biject with commutation classes. What do directed braid moves do?

$$
\begin{array}{l|l}
4 & -+ \\
3 & ---- \\
2 & -+ \\
1 & ++++
\end{array}
$$

Weaving Patterns

Lemma

Let $w, w^{\prime} \in \widetilde{S}_{n}, \rho \in \mathcal{R}(w)$, and $\sigma \in \mathcal{R}\left(w^{\prime}\right)$. Then $P_{\rho}=P_{\sigma}$ if and only if $w=w^{\prime}$ and $\rho \sim \sigma$.

Weaving patterns biject with commutation classes. What do directed braid moves do?

Weaving Patterns

Lemma

Let $w, w^{\prime} \in \widetilde{S}_{n}, \rho \in \mathcal{R}(w)$, and $\sigma \in \mathcal{R}\left(w^{\prime}\right)$. Then $P_{\rho}=P_{\sigma}$ if and only if $w=w^{\prime}$ and $\rho \sim \sigma$.

Weaving patterns biject with commutation classes. What do directed braid moves do?

Weaving Patterns

Lemma

Let $w, w^{\prime} \in \widetilde{S}_{n}, \rho \in \mathcal{R}(w)$, and $\sigma \in \mathcal{R}\left(w^{\prime}\right)$. Then $P_{\rho}=P_{\sigma}$ if and only if $w=w^{\prime}$ and $\rho \sim \sigma$.

Weaving patterns biject with commutation classes. What do directed braid moves do?

Lemma

If $\rho, \sigma \in \mathcal{R}(w)$ and σ differs from ρ by a directed braid move, then P_{σ} differs from P_{ρ} by a single adjacent swap $-+\rightarrow+-$.

Weaving Patterns

Theorem (Billey-Elias-Liu-C.)

Let $w \in \widetilde{S}_{n}, \rho \in \mathcal{R}(w)$, and suppose that $P_{\rho}(i)$ contains a contiguous subword -+ for some $i \in[n]$. Then there exists $\sigma \in \mathcal{R}(w)$ such that $[\rho]$ and $[\sigma]$ differ by a directed braid move of the form $j(j+1) j \rightarrow(j+1) j(j+1)$ for some $j \in[n]$.

Corollary

For arbitrary $w \in \widetilde{S}_{n}, B_{n, 2}(w)$ has a unique min element $[\rho]$ and a unique max element $[\sigma]$ such that P_{ρ} has no contiguous subword +- and P_{σ} has no contiguous subword -+.

Weaving Patterns

Theorem (Billey-Elias-Liu-C.)

Let $w \in \widetilde{S}_{n}, \rho \in \mathcal{R}(w)$, and suppose that $P_{\rho}(i)$ contains a contiguous subword -+ for some $i \in[n]$. Then there exists $\sigma \in \mathcal{R}(w)$ such that $[\rho]$ and $[\sigma]$ differ by a directed braid move of the form $j(j+1) j \rightarrow(j+1) j(j+1)$ for some $j \in[n]$.

Proof.

WLOG, assume that the -+ crossings occur in row 2 . Then there is a contiguous subword $1 \tau 1$ where $\tau \in\{2,3,4, \ldots, n-1\}^{*}$.

If τ contains only one 2 , then done. Otherwise, write τ contains a subword $2 \tau^{\prime} 2$ with $\tau^{\prime} \in\{3,4, \ldots, n-1\}^{*}$ and induct.

Weaving Patterns

Theorem (Billey-Elias-Liu-C.)

For all $w \in \widetilde{S}_{n}, B_{n, 2}(w)$ is a ranked poset under single step inclusion of reversal sets, with unique min element \varnothing and unique max element $\operatorname{lnv}_{3}(w)$. Elements of $B_{n, 2}(w)$ biject to maximal chains in $[\mathrm{Id}, w]$ in the weak order.

Enumeration of $B_{n, k}(w)$

Theorem (Stanley (1984))
The cardinality of $\mathcal{R}\left(w_{0}\right)$ for $w_{0} \in S_{n}$ is equal to the number of standard Young tableaux of shape $(n-1, n-2, \ldots, 1)$.

What about $B_{n, 2}(w)=\mathcal{C}\left(w_{0}\right)$?

Theorem (Knuth (1992))

The cardinality of $\mathcal{C}\left(w_{0}\right)$ for $w_{0} \in S_{n}$ is asymptotically equal to $2^{\Theta\left(n^{2}\right)}$.

For comparison, $\left|\mathcal{R}\left(w_{0}\right)\right|$ is asymptotically equal to $2^{\Theta\left(n^{2} \log n\right)}$.

Enumeration of $B_{n, k}(w)$

Theorem (Ziegler (1993))

For all $n \geq 4$, we have

- $\left|B_{n, n}\left(w_{0}\right)\right|=1$,
- $\left|B_{n, n-1}\left(w_{0}\right)\right|=2$,
- $\left|B_{n, n-2}\left(w_{0}\right)\right|=2 n$, and
- $\left|B_{n, n-3}\left(w_{0}\right)\right|=2^{n}+n 2^{n-2}-2 n$.

Corollary (Billey-Elias-Liu-C.)

Let $w \in \widetilde{S}_{n}, \rho \in \mathcal{R}(w)$ and $\left(a_{i}\right),\left(b_{i}\right)$ be the content of P_{ρ}. Then

$$
\left|B_{n, 2}(w)\right| \leq \prod_{i=1}^{n}\binom{a_{i}+b_{i}}{a_{i}}
$$

Future Work

- Generalize $B_{n, k}(w)$ to infinite biclosed sets (Barkley-Speyer) and infinite reduced words (Lam-Pylyavskyy).
- Generalize weaving patterns to encode elements of $B_{n, k}\left(w_{0}\right)$ for $k>2$.
- Find a simple criterion that characterizes weaving patterns.
- Asymptotics of $\left|B_{n, k}\left(w_{0}\right)\right|$.

