Commutation Classes of Permutations

Herman Chau

University of Washington

Commutation Classes of [4321]

What is a Commutation Class?

$$S_n :=$$
 symmetric group on *n* elements

 $\sigma_i := adjacent transposition swapping i and i + 1$

 $\sigma_i := adjacent transposition swapping i and i + 1$

The longest permutation w_0 sends $i \mapsto n - i + 1$.

 $\sigma_i := adjacent transposition swapping i and i + 1$

The longest permutation w_0 sends $i \mapsto n - i + 1$.

Example (n = 4)

$$w_{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix}$$
$$= \sigma_{1}\sigma_{2}\sigma_{3}\sigma_{1}\sigma_{2}\sigma_{1}.$$

 $\sigma_i := adjacent transposition swapping i and i + 1$

The longest permutation w_0 sends $i \mapsto n - i + 1$.

Example (n = 4)

$$w_{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix}$$
$$= \sigma_{1}\sigma_{2}\sigma_{3}\sigma_{1}\sigma_{2}\sigma_{1}.$$

A reduced expression for $w \in S_n$ is a product of adjacent transpositions $w = \sigma_{i_1} \cdots \sigma_{i_j}$ of minimum length. The set of all reduced expressions for w is denoted $\mathcal{R}(w)$.

A reduced expression for $w \in S_n$ is a product of adjacent transpositions $w = \sigma_{i_1} \cdots \sigma_{i_j}$ of minimum length. The set of all reduced expressions for w is denoted $\mathcal{R}(w)$.

Definition

The length of a permutation w, denoted $\ell(w)$, is the length of any reduced expression for w.

A reduced expression for $w \in S_n$ is a product of adjacent transpositions $w = \sigma_{i_1} \cdots \sigma_{i_j}$ of minimum length. The set of all reduced expressions for w is denoted $\mathcal{R}(w)$.

Definition

The length of a permutation w, denoted $\ell(w)$, is the length of any reduced expression for w.

Fact

The longest permutation $w_0 \in S_n$ has length $\binom{n}{2}$.

Given a reduced expression of $w \in S_n$, we can obtain new reduced expressions via **commutation** and **braid** relations.

- Commutation: Let $1 \le i < i + 1 < j \le n 1$. Then $\sigma_i \sigma_j = \sigma_j \sigma_i$.
- **Braid:** Let $1 \le i \le n-2$. Then $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.

Given a reduced expression of $w \in S_n$, we can obtain new reduced expressions via **commutation** and **braid** relations.

- Commutation: Let $1 \le i < i + 1 < j \le n 1$. Then $\sigma_i \sigma_j = \sigma_j \sigma_i$.
- **Braid:** Let $1 \le i \le n-2$. Then $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$.

Commutation and Braid Relations

 \downarrow commute $\sigma_3\sigma_1$

Commutation and Braid Relations

 \downarrow braid $\sigma_1 \sigma_2 \sigma_1$

Theorem (Matsumoto, Tits)

Any two reduced expressions in $\mathcal{R}(w)$ are connected by a sequence of commutation and braid relations.

Theorem (Matsumoto, Tits)

Any two reduced expressions in $\mathcal{R}(w)$ are connected by a sequence of commutation and braid relations.

We can visualize this as a graph G whose vertex set is $\mathcal{R}(w)$ and (ρ_1, ρ_2) is an edge if and only if ρ_1, ρ_2 differ by a commutation or braid relation.

Reduced Expression Graph for [4, 3, 2, 1]

Two reduced expressions ρ_1, ρ_2 are commutation equivalent, denoted $\rho_1 \sim \rho_2$ if they differ by a series of commutation relations.

Two reduced expressions ρ_1, ρ_2 are commutation equivalent, denoted $\rho_1 \sim \rho_2$ if they differ by a series of commutation relations.

Definition

 $C(w) := \mathcal{R}(w) / \sim$ is the set of commutation classes of w.

Reduced Expression Graph for [4, 3, 2, 1]

Commutation Class Graph for [4, 3, 2, 1]

Wiring Diagrams of Commutation Classes

Wiring Diagrams of Commutation Classes

Wiring Diagrams of Commutation Classes

Theorem (Elnitsky, 1993)

Let $n \ge 2$. There is a bijection between $C(w_0)$ and rhombic tilings of the regular 2n-gon.

Proof Without Words

Proof Without Words

Bijection for General w

For general $w \in S_n$, C(w) is in bijection with rhombic tilings of a specific shape, not necessarily the regular 2n-gon.

Bijection for General w

For general $w \in S_n$, C(w) is in bijection with rhombic tilings of a specific shape, not necessarily the regular 2n-gon.

Counting Commutation Classes

Theorem (Stanley, 1984) (Edelman and Greene, 1987)

The number of reduced expressions $|\mathcal{R}(w_0)|$ in S_n is equal to the number of standard Young tableaux of shape (n - 1, n - 2, ..., 1). By the hook-length formula, this is equal to $\binom{n}{2}!/1^{n-1}3^{n-2}\cdots(2n-3)^1$.

Theorem (Stanley, 1984) (Edelman and Greene, 1987)

The number of reduced expressions $|\mathcal{R}(w_0)|$ in S_n is equal to the number of standard Young tableaux of shape (n - 1, n - 2, ..., 1). By the hook-length formula, this is equal to $\binom{n}{2}!/1^{n-1}3^{n-2}\cdots(2n-3)^1$.

п	$ \mathcal{R}(w_0) $
1	1
2	1
3	2
4	16
5	768
6	292864

Theorem (Stanley, 1984) (Edelman and Greene, 1987)

The number of reduced expressions $|\mathcal{R}(w_0)|$ in S_n is equal to the number of standard Young tableaux of shape (n - 1, n - 2, ..., 1). By the hook-length formula, this is equal to $\binom{n}{2}!/1^{n-1}3^{n-2}\cdots(2n-3)^1$.

п	$ \mathcal{R}(w_0) $
1	1
2	1
3	2
4	16
5	768
6	292864

Asymptotically, $|\mathcal{R}(w_0)| = 2^{\Theta(n^2 \log n)}$.

No exact formula is known for the number of commutation classes $|C(w_0)|$.

No exact formula is known for the number of commutation classes $|C(w_0)|$.

п	$ \mathcal{C}(W_0) $
1	1
2	1
3	2
4	8
5	62
6	908

No exact formula is known for the number of commutation classes $|C(w_0)|$.

п	$ \mathcal{C}(w_0) $
1	1
2	1
3	2
4	8
5	62 = 2 ×31
6	$908 = 2^2 \times 227$

Theorem (Knuth, 1992)

The number of commutation classes of the longest word $w_0 \in S_n$ grows as $2^{\Theta(n^2)}$.

Theorem (Knuth, 1992)

The number of commutation classes of the longest word $w_0 \in S_n$ grows as $2^{\Theta(n^2)}$.

What is the constant *c* in the exponent?

- (Knuth, 1992) $\sim 0.1667 \le c \le \sim 0.7924$
- (Felsner, 1997) $c \leq \sim 0.6974$
- \cdot (Felsner and Valtr, 2011) \sim 0.1887 \leq c \leq \sim 0.6571
- \cdot (Dumitrescu and Mandal, 2020) \sim 0.2083 \leq c

Theorem (Knuth, 1992)

The number of commutation classes of the longest word $w_0 \in S_n$ grows as $2^{\Theta(n^2)}$.

What is the constant *c* in the exponent?

- (Knuth, 1992) $\sim 0.1667 \le c \le \sim 0.7924$
- \cdot (Felsner, 1997) $c \leq \sim$ 0.6974
- \cdot (Felsner and Valtr, 2011) \sim 0.1887 \leq c \leq \sim 0.6571
- \cdot (Dumitrescu and Mandal, 2020) \sim 0.2083 \leq c

Definition

Let $\overline{\rho} \in \mathcal{C}(w_0)$. The weaving pattern of ρ is a function $P_{\overline{\rho}} : [n] \to \{+, -\}^*$ that records the sequence of up (+) and down (-) crossings in the wiring diagram of $\overline{\rho}$.

Definition

Let $\overline{\rho} \in \mathcal{C}(w_0)$. The weaving pattern of ρ is a function $P_{\overline{\rho}} : [n] \to \{+, -\}^*$ that records the sequence of up (+) and down (-) crossings in the wiring diagram of $\overline{\rho}$.

Lemma

The map $\overline{\rho} \mapsto P_{\overline{\rho}}$ is an injection.

Lemma

The map $\overline{\rho} \mapsto P_{\overline{\rho}}$ is an injection.

Proof.

It suffices to find an inverse map that takes a weaving pattern $P_{\overline{\rho}}$ back to a commutation class $\overline{\rho}$.

- 1. Find *i* and *i* + 1 such that $P_{\overline{\rho}}(i)$ begins with a + and $P_{\overline{\rho}}(i+1)$ begins with a -.
- 2. Record σ_i , delete the leading + and -, and swap rows *i* and *i* + 1 in the weaving pattern.
- 3. Repeat until the weaving pattern is empty.

The map $\overline{\rho} \mapsto P_{\overline{\rho}}$ is an injection.

```
The map \overline{\rho} \mapsto P_{\overline{\rho}} is an injection.
```

Example

$$\begin{array}{c|c} + & - & - & - \\ 3 & - & - & + \\ 2 & - & + & + \\ 1 & + & + & + \end{array}$$

Rows 1 and 2 have a leading + and - respectively.

```
The map \overline{\rho} \mapsto P_{\overline{\rho}} is an injection.
```

Example

$$\begin{array}{c|cccc}
4 & --- & & \\
3 & --+ & & \\
2 & ++ & & \sigma_1 \\
1 & ++ & & \end{array}$$

Delete leading signs, swap, and record σ_1 .

```
The map \overline{\rho} \mapsto P_{\overline{\rho}} is an injection.
```

Example

Rows 2 and 3 have a leading + and - respectively.

```
The map \overline{\rho} \mapsto P_{\overline{\rho}} is an injection.
```

Example

$$\begin{array}{c|ccccc}
4 & --- & & \\
3 & + & & \\
2 & -+ & & \sigma_1 \sigma_2 \\
1 & ++ & & \end{array}$$

Delete leading signs, swap, and record σ_2 .

The map $\overline{\rho} \mapsto P_{\overline{\rho}}$ is an injection.

Example

$$\begin{array}{c|ccccc}
4 & --- & & \\
3 & + & & \\
2 & -+ & & \sigma_1 \sigma_2 \\
1 & ++ & & \end{array}$$

Choice of either rows 1 and 2, or rows 3 and 4.

The map $\overline{\rho} \mapsto P_{\overline{\rho}}$ is an injection.

$$\begin{array}{c|c}
4 \\
3 \\
2 \\
1 \\
+ \end{array} \qquad \sigma_1 \sigma_2 \sigma_3 \sigma_1 \sigma_2$$

```
The map \overline{\rho} \mapsto P_{\overline{\rho}} is an injection.
```


The map $\overline{\rho} \mapsto P_{\overline{\rho}}$ is an injection.

The map $\overline{\rho} \mapsto P_{\overline{\rho}}$ is an injection.

Observation

For any $\overline{\rho} \in \mathcal{C}(w_0)$, the *i*th row $P_{\overline{\rho}}(i)$ has (n-i) +'s and (i-1) -'s.

The map $\overline{\rho} \mapsto P_{\overline{\rho}}$ is an injection.

Observation

For any $\overline{\rho} \in \mathcal{C}(w_0)$, the *i*th row $P_{\overline{\rho}}(i)$ has (n - i) + s and (i - 1) - s.

Theorem

The number of commutation classes of w_0 is at most $\prod_{i=1}^{n} {n-1 \choose n-i}$.

Theorem

The number of commutation classes of w_0 is at most $\prod_{i=1}^{n} {n-1 \choose n-i}$.

Taking logarithms,

$$\log \prod_{i=1}^{n} {\binom{n-1}{n-i}} \le n \log (n-1)! - 2 \sum_{i=0}^{n-1} \log i!$$

Theorem

The number of commutation classes of w_0 is at most $\prod_{i=1}^{n} {n-1 \choose n-i}$.

Taking logarithms,

$$\log \prod_{i=1}^{n} \binom{n-1}{n-i} \le n \log (n-1)! - 2 \sum_{i=0}^{n-1} \log i!$$
$$\approx n^2 \log (n-1) - 2 \sum_{i=0}^{n-1} i \log i \quad \text{(by Stirling's)}$$

Theorem

The number of commutation classes of w_0 is at most $\prod_{i=1}^{n} {n-1 \choose n-i}$.

Taking logarithms,

$$\log \prod_{i=1}^{n} \binom{n-1}{n-i} \le n \log (n-1)! - 2 \sum_{i=0}^{n-1} \log i!$$
$$\approx n^2 \log (n-1) - 2 \sum_{i=0}^{n-1} i \log i \quad \text{(by Stirling's)}$$
$$\approx n^2 \log (n-1) - 2 \int_0^{n-1} x \log x \, dx$$

Upper Bound on $|C(w_0)|$

Theorem

The number of commutation classes of w_0 is at most $\prod_{i=1}^{n} {n-1 \choose n-i}$.

Taking logarithms,

$$\log \prod_{i=1}^{n} \binom{n-1}{n-i} \le n \log (n-1)! - 2 \sum_{i=0}^{n-1} \log i!$$
$$\approx n^2 \log (n-1) - 2 \sum_{i=0}^{n-1} i \log i \quad \text{(by Stirling's)}$$
$$\approx n^2 \log (n-1) - 2 \int_0^{n-1} x \log x \, dx$$
$$\approx \frac{1}{2} n^2.$$

Upper Bound on $|C(w_0)|$

Theorem

The number of commutation classes of w_0 is at most $\prod_{i=1}^{n} {n-1 \choose n-i}$.

Taking logarithms,

$$\log \prod_{i=1}^{n} \binom{n-1}{n-i} \le n \log (n-1)! - 2 \sum_{i=0}^{n-1} \log i!$$
$$\approx n^2 \log (n-1) - 2 \sum_{i=0}^{n-1} i \log i \quad \text{(by Stirling's)}$$
$$\approx n^2 \log (n-1) - 2 \int_0^{n-1} x \log x \, dx$$
$$\approx \frac{1}{2} n^2.$$

So $|\mathcal{C}(w_0)| \le e^{n^2/2} = 2^{n^2 \log_2(e)/2}$ and $\frac{1}{2} \log_2(e) \approx 0.7213$.

What is the constant *c* in the exponent?

- \cdot (Knuth, 1992) $~\sim 0.1667 \leq c \leq \sim 0.7924$
- \cdot (Felsner, 1997) $c \leq \sim$ 0.6974
- \cdot (Felsner and Valtr, 2011) \sim 0.1887 \leq c \leq \sim 0.6571
- \cdot (Dumitrescu and Mandal, 2020) \sim 0.2083 \leq c

Idea

Suppose n = 3k. Count commutation classes of the form $\overline{\rho_0 \rho_1 \rho_2 \rho_3}$, where

- ρ_0 yields $[\underline{2k+1}, ..., \underline{3k}, \underline{k+1}, ..., \underline{2k}, \underline{1}, ..., \underline{k}]$,
- ρ_1 yields $[1, ..., k, k + 1, ..., 2k, \underline{3k}, ..., 2k + 1]$,
- ρ_2 yields $[1, ..., k, \underline{2k}, ..., k + 1, 2k + 1, ..., 3k]$,
- ρ_3 yields [<u>k</u>,...,1, k + 1,...,2k,2k + 1,...,3k].

- $B_k \coloneqq |\mathcal{C}(w_0)|$ where $w_0 \in S_k$
- $W_{3k} := [2k+1,\ldots,3n,k+1,\ldots,2k,1,\ldots,k] \in S_{3k}$

- $B_k \coloneqq |\mathcal{C}(w_0)|$ where $w_0 \in S_k$
- $W_{3k} := [2k+1,\ldots,3n,k+1,\ldots,2k,1,\ldots,k] \in S_{3k}$

Observation

A lower bound for B_{3k} is $B_{3k} \ge |\mathcal{C}(w_{3k})| \cdot B_k^3$.

- $B_k \coloneqq |\mathcal{C}(w_0)|$ where $w_0 \in S_k$
- $w_{3k} := [2k+1, \dots, 3n, k+1, \dots, 2k, 1, \dots, k] \in S_{3k}$

Observation

A lower bound for B_{3k} is $B_{3k} \ge |\mathcal{C}(w_{3k})| \cdot B_k^3$.

How do we estimate $|\mathcal{C}(w_{3k})|$?

- $B_k \coloneqq |\mathcal{C}(w_0)|$ where $w_0 \in S_k$
- $W_{3k} := [2k+1, \dots, 3n, k+1, \dots, 2k, 1, \dots, k] \in S_{3k}$

Observation

A lower bound for B_{3k} is $B_{3k} \ge |\mathcal{C}(w_{3k})| \cdot B_k^3$.

How do we estimate $|\mathcal{C}(w_{3k})|$?

Count rhombic tilings via Elnitsky's bijection!

Definition

A plane partition is a matrix of nonnegative integers $\pi_{i,j}$ such that

 $\pi_{i,j} \ge \pi_{i,j+1} \text{ and } \pi_{i,j} \ge \pi_{i+1,j}.$

Definition

A plane partition is a matrix of nonnegative integers $\pi_{i,j}$ such that $\pi_{i,j} \ge \pi_{i,j+1}$ and $\pi_{i,j} \ge \pi_{i+1,j}$.

Lemma

The commutation classes of w_{3k} are in bijection with $k \times k$ plane partitions with entries at most k.

Lemma

The commutation classes of w_{3k} are in bijection with $k \times k$ plane partitions with entries at most k.

Theorem (MacMahon, 1916)

The number of $i \times j$ plane partitions with entries at most k is equal to

$$\prod_{a=0}^{i-1} \prod_{b=0}^{j-1} \prod_{c=0}^{k-1} \frac{a+b+c+2}{a+b+c+1}.$$

$$\log \prod_{0 \le a, b, c \le k-1} \frac{a+b+c+2}{a+b+c+1}$$

$$\log \prod_{0 \le a, b, c \le k-1} \frac{a+b+c+2}{a+b+c+1} = \sum_{0 \le a, b, c \le k-1} \log (a+b+c+2) - \log (a+b+c+1)$$

$$\log \prod_{0 \le a, b, c \le k-1} \frac{a+b+c+2}{a+b+c+1}$$

= $\sum_{0 \le a, b, c \le k-1} \log (a+b+c+2) - \log (a+b+c+1)$
= $\sum_{0 \le a, b \le k-1} \log (a+b+n+1) - \log (a+b+1)$

$$\log \prod_{0 \le a, b, c \le k-1} \frac{a+b+c+2}{a+b+c+1}$$

= $\sum_{0 \le a, b, c \le k-1} \log (a+b+c+2) - \log (a+b+c+1)$
= $\sum_{0 \le a, b \le k-1} \log (a+b+k+1) - \log (a+b+1)$
 $\approx \int_{x=0}^{k-1} \int_{y=0}^{k-1} \log (x+y+k+1) - \log (x+y+1) \, dy \, dx$

$$\log \prod_{0 \le a, b, c \le k-1} \frac{a+b+c+2}{a+b+c+1}$$

= $\sum_{0 \le a, b, c \le k-1} \log (a+b+c+2) - \log (a+b+c+1)$
= $\sum_{0 \le a, b \le k-1} \log (a+b+k+1) - \log (a+b+1)$
 $\approx \int_{x=0}^{k-1} \int_{y=0}^{k-1} \log (x+y+k+1) - \log (x+y+1) \, dy \, dx$
 $\approx \left(\frac{9}{2}\ln(3) - 6\ln(2)\right) k^2$

$$\log \prod_{0 \le a, b, c \le k-1} \frac{a+b+c+2}{a+b+c+1}$$

= $\sum_{0 \le a, b, c \le k-1} \log (a+b+c+2) - \log (a+b+c+1)$
= $\sum_{0 \le a, b \le k-1} \log (a+b+k+1) - \log (a+b+1)$
 $\approx \int_{x=0}^{k-1} \int_{y=0}^{k-1} \log (x+y+k+1) - \log (x+y+1) \, dy \, dx$
 $\approx \left(\frac{9}{2} \ln(3) - 6 \ln(2)\right) k^2$
 $\approx 0.7848k^2.$

To approximate the number of such $k \times k$ plane partitions with entries at most k, we take logarithms.

$$\log \prod_{0 \le a, b, c \le k-1} \frac{a+b+c+2}{a+b+c+1}$$

= $\sum_{0 \le a, b, c \le k-1} \log (a+b+c+2) - \log (a+b+c+1)$
= $\sum_{0 \le a, b \le k-1} \log (a+b+k+1) - \log (a+b+1)$
 $\approx \int_{x=0}^{k-1} \int_{y=0}^{k-1} \log (x+y+k+1) - \log (x+y+1) \, dy \, dx$
 $\approx \left(\frac{9}{2} \ln(3) - 6 \ln(2)\right) k^2$
 $\approx 0.7848k^2.$

This yields $|\mathcal{C}(w_{3k})| \approx e^{0.7848k^2}$.

$$B_{3k} \ge e^{0.7848k^2} \cdot B_k^3$$

$$B_{3k} \ge e^{0.7848k^2} \cdot B_k^3$$

$$\ge e^{0.7848k^2} \cdot (e^{0.7848(k/3)^2})^3 \cdot B_{k/3}^{3^2}$$

$$egin{aligned} &\mathcal{B}_{3k} \geq e^{0.7848k^2} \cdot \mathcal{B}_k^3 \ &\geq e^{0.7848k^2} \cdot (e^{0.7848(k/3)^2})^3 \cdot \mathcal{B}_{k/3}^{3^2} \ &pprox \prod_{i=0}^{\lfloor \log_3(k)
floor} e^{0.7848k^2/3^i} \end{aligned}$$

$$B_{3k} \ge e^{0.7848k^2} \cdot B_k^3$$

$$\ge e^{0.7848k^2} \cdot (e^{0.7848(k/3)^2})^3 \cdot B_{k/3}^{3^2}$$

$$\approx \prod_{i=0}^{\lfloor \log_3(k) \rfloor} e^{0.7848k^2/3^i}$$

$$\approx e^{0.7848k^2 \cdot 3/2}$$

$$B_{3k} \ge e^{0.7848k^2} \cdot B_k^3$$

$$\ge e^{0.7848k^2} \cdot (e^{0.7848(k/3)^2})^3 \cdot B_{k/3}^{3^2}$$

$$\approx \prod_{i=0}^{\lfloor \log_3(k) \rfloor} e^{0.7848k^2/3^i}$$

$$\approx e^{0.7848k^2 \cdot 3/2}$$

Thus, $\log_2(B_{3k}) \approx \log_2(e) \cdot 0.7848 \cdot \frac{3}{2} \cdot \frac{1}{3^2} k^2 \approx 0.1887 k^2$.

What is the constant c in the exponent?

- \cdot (Knuth, 1992) $~\sim 0.1667 \leq c \leq \sim 0.7924$
- (Felsner, 1997) $c \leq \sim 0.6974$
- \cdot (Felsner and Valtr, 2011) \sim 0.1887 \leq c \leq \sim 0.6571
- \cdot (Dumitrescu and Mandal, 2020) \sim 0.2083 \leq c

• Can a better lower bound be obtained via a decomposition into 4 blocks?

- Can a better lower bound be obtained via a decomposition into 4 blocks?
- Is there a criterion for realizable weaving patterns?

- Can a better lower bound be obtained via a decomposition into 4 blocks?
- Is there a criterion for realizable weaving patterns?
- How are the sizes of commutation classes distributed?

Thank You!