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What is a Commutation Class?



Permutations

Sn := symmetric group on n elements

σi := adjacent transposition swapping i and i+ 1

The longest permutation w0 sends i 7→ n− i+ 1.

Example (n = 4)

w0 =
[
1 2 3 4
4 3 2 1

]
=

[
4 3 2 1

]
= σ1σ2σ3σ1σ2σ1.



Permutations

Sn := symmetric group on n elements

σi := adjacent transposition swapping i and i+ 1

The longest permutation w0 sends i 7→ n− i+ 1.

Example (n = 4)

w0 =
[
1 2 3 4
4 3 2 1

]
=

[
4 3 2 1

]
= σ1σ2σ3σ1σ2σ1.



Permutations

Sn := symmetric group on n elements

σi := adjacent transposition swapping i and i+ 1

The longest permutation w0 sends i 7→ n− i+ 1.

Example (n = 4)

w0 =
[
1 2 3 4
4 3 2 1

]
=

[
4 3 2 1

]
= σ1σ2σ3σ1σ2σ1.



Permutations

Sn := symmetric group on n elements

σi := adjacent transposition swapping i and i+ 1

The longest permutation w0 sends i 7→ n− i+ 1.

Example (n = 4)

w0 =
[
1 2 3 4
4 3 2 1

]
=

[
4 3 2 1

]
= σ1σ2σ3σ1σ2σ1.



Permutations

Sn := symmetric group on n elements

σi := adjacent transposition swapping i and i+ 1

The longest permutation w0 sends i 7→ n− i+ 1.

Example (n = 4)

w0 =
[
1 2 3 4
4 3 2 1

]
=

[
4 3 2 1

]
= σ1σ2σ3σ1σ2σ1.



Wiring Diagrams

σ1

σ2

σ3

σ1

σ2

σ1

1

2

3

4

4

3

2

1



Wiring Diagrams

σ1

σ2

σ3

σ1

σ2

σ1

1

2

3

4

4

3

2

1



Wiring Diagrams

σ1

σ2

σ3

σ1

σ2

σ1

1

2

3

4

4

3

2

1



Reduced Expressions

Definition
A reduced expression for w ∈ Sn is a product of adjacent
transpositions w = σi1 · · ·σij of minimum length. The set of all
reduced expressions for w is denoted R(w).

Definition
The length of a permutation w, denoted ℓ(w), is the length of any
reduced expression for w.

Fact
The longest permutation w0 ∈ Sn has length

(n
2
)
.
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Commutation and Braid Relations

Given a reduced expression of w ∈ Sn, we can obtain new reduced
expressions via commutation and braid relations.

• Commutation: Let 1 ≤ i < i+ 1 < j ≤ n− 1. Then σiσj = σjσi.
• Braid: Let 1 ≤ i ≤ n− 2. Then σiσi+1σi = σi+1σiσi+1.

Example (n=4)

σ1σ2σ3σ1σ2σ1
commute

= σ1σ2σ1σ3σ2σ1

σ1σ2σ3σ1σ2σ1
braid
= σ1σ2σ3σ2σ1σ2
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Commutation and Braid Relations
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Word Property

Theorem (Matsumoto, Tits)
Any two reduced expressions in R(w) are connected by a sequence
of commutation and braid relations.

We can visualize this as a graph G whose vertex set is R(w) and
(ρ1, ρ2) is an edge if and only if ρ1, ρ2 differ by a commutation or braid
relation.
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Reduced Expression Graph for [4, 3, 2, 1]
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Commutation Classes

Definition
Two reduced expressions ρ1, ρ2 are commutation equivalent,
denoted ρ1 ∼ ρ2 if they differ by a series of commutation relations.

Definition
C(w) := R(w)/ ∼ is the set of commutation classes of w.
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Wiring Diagrams of Commutation Classes
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Elnitsky’s Bijection

Theorem (Elnitsky, 1993)
Let n ≥ 2. There is a bijection between C(w0) and rhombic tilings of
the regular 2n-gon.



Bijection in S4
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Bijection for General w

For general w ∈ Sn, C(w) is in bijection with rhombic tilings of a
specific shape, not necessarily the regular 2n-gon.

Example (w = [3, 4, 2, 1])
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Counting Commutation Classes



Counting Reduced Expressions of w0

Theorem (Stanley, 1984) (Edelman and Greene, 1987)
The number of reduced expressions |R(w0)| in Sn is equal to the
number of standard Young tableaux of shape (n− 1,n− 2, . . . , 1). By
the hook-length formula, this is equal to

(n
2
)
!/1n−13n−2 · · · (2n− 3)1.

n |R(w0)|
1 1
2 1
3 2
4 16
5 768
6 292864
… …

Asymptotically, |R(w0)| = 2Θ(n2 log n).
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Counting Commutation Classes of w0

No exact formula is known for the number of commutation classes
|C(w0)|.

n |C(w0)|
1 1
2 1
3 2
4 8
5 62
6 908
… …
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Counting Commutation Classes of w0

No exact formula is known for the number of commutation classes
|C(w0)|.

n |C(w0)|
1 1
2 1
3 2
4 8
5 62 = 2 ×31
6 908 = 22 × 227
… …



Asymptotics of |C(w0)|

Theorem (Knuth, 1992)
The number of commutation classes of the longest word w0 ∈ Sn
grows as 2Θ(n2).

What is the constant c in the exponent?

• (Knuth, 1992) ∼ 0.1667 ≤ c ≤ ∼ 0.7924
• (Felsner, 1997) c ≤ ∼ 0.6974
• (Felsner and Valtr, 2011) ∼ 0.1887 ≤ c ≤∼ 0.6571
• (Dumitrescu and Mandal, 2020) ∼ 0.2083 ≤ c
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Upper Bound on |C(w0)|

Definition
Let ρ ∈ C(w0). The weaving pattern of ρ is a function
Pρ : [n] → {+,−}∗ that records the sequence of up (+) and down
(−) crossings in the wiring diagram of ρ.

Example

4 −−−
3 −−+

2 −++
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Upper Bound on |C(w0)|

Lemma
The map ρ 7→ Pρ is an injection.

Proof.
It suffices to find an inverse map that takes a weaving pattern Pρ
back to a commutation class ρ.

1. Find i and i+ 1 such that Pρ(i) begins with a + and Pρ(i+ 1)
begins with a −.

2. Record σi, delete the leading + and −, and swap rows i and i+ 1
in the weaving pattern.

3. Repeat until the weaving pattern is empty.
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Rows 1 and 2 have a leading + and − respectively.



Upper Bound on |C(w0)|

Lemma
The map ρ 7→ Pρ is an injection.

Example

4 −−−
3 −−+

2 ++

1 ++

σ1

Delete leading signs, swap, and record σ1.
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Lemma
The map ρ 7→ Pρ is an injection.

Example

4 −−−
3 −−+

2 ++

1 ++

σ1

Rows 2 and 3 have a leading + and − respectively.



Upper Bound on |C(w0)|

Lemma
The map ρ 7→ Pρ is an injection.

Example

4 −−−
3 +

2 −+

1 ++

σ1σ2

Delete leading signs, swap, and record σ2.



Upper Bound on |C(w0)|

Lemma
The map ρ 7→ Pρ is an injection.

Example

4 −−−
3 +

2 −+

1 ++

σ1σ2

Choice of either rows 1 and 2, or rows 3 and 4.
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Lemma
The map ρ 7→ Pρ is an injection.

Example

4
3 −−
2 −+

1 ++

σ1σ2σ3
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Lemma
The map ρ 7→ Pρ is an injection.

Example

4
3 −−
2 +

1 +

σ1σ2σ3σ1
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Upper Bound on |C(w0)|

Lemma
The map ρ 7→ Pρ is an injection.

Example

4
3
2
1

σ1σ2σ3σ1σ2σ1

σ1σ2σ3σ1σ2σ1 is the desired commutation class.



Upper Bound on |C(w0)|

Lemma
The map ρ 7→ Pρ is an injection.

Observation
For any ρ ∈ C(w0), the ith row Pρ(i) has (n− i) +’s and (i− 1) −’s.

Theorem
The number of commutation classes of w0 is at most

∏n
i=1

(n−1
n−i

)
.



Upper Bound on |C(w0)|

Lemma
The map ρ 7→ Pρ is an injection.

Observation
For any ρ ∈ C(w0), the ith row Pρ(i) has (n− i) +’s and (i− 1) −’s.

Theorem
The number of commutation classes of w0 is at most

∏n
i=1

(n−1
n−i

)
.



Upper Bound on |C(w0)|

Lemma
The map ρ 7→ Pρ is an injection.

Observation
For any ρ ∈ C(w0), the ith row Pρ(i) has (n− i) +’s and (i− 1) −’s.

Theorem
The number of commutation classes of w0 is at most

∏n
i=1

(n−1
n−i

)
.



Upper Bound on |C(w0)|

Theorem
The number of commutation classes of w0 is at most

∏n
i=1

(n−1
n−i

)
.

Taking logarithms,

log
n∏
i=1

(
n− 1
n− i

)
≤ n log (n− 1)!− 2
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i=0

log i!
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So |C(w0)| ≤ en2/2 = 2n2 log2(e)/2 and 1
2 log2(e) ≈ 0.7213.
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Upper Bound on |C(w0)|

What is the constant c in the exponent?

• (Knuth, 1992) ∼ 0.1667 ≤ c ≤ ∼ 0.7924
• (Felsner, 1997) c ≤ ∼ 0.6974
• (Felsner and Valtr, 2011) ∼ 0.1887 ≤ c ≤∼ 0.6571
• (Dumitrescu and Mandal, 2020) ∼ 0.2083 ≤ c



Lower Bound on |C(w0)|

Idea
Suppose n = 3k. Count commutation classes of the form ρ0ρ1ρ2ρ3,
where

• ρ0 yields [2k+ 1, . . . , 3k, k+ 1, . . . , 2k, 1, . . . , k],
• ρ1 yields [1, . . . , k, k+ 1, . . . , 2k, 3k, . . . , 2k+ 1],
• ρ2 yields [1, . . . , k, 2k, . . . , k+ 1, 2k+ 1, . . . , 3k],
• ρ3 yields [k, . . . , 1, k+ 1, . . . , 2k, 2k+ 1, . . . , 3k].



Lower Bound on |C(w0)|
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Lower Bound on |C(w0)|

Some notation:

• Bk := |C(w0)| where w0 ∈ Sk
• w3k := [2k+ 1, . . . 3n, k+ 1, . . . , 2k, 1, . . . k] ∈ S3k

Observation
A lower bound for B3k is B3k ≥ |C(w3k)| · B3k.

How do we estimate |C(w3k)|?

Count rhombic tilings via Elnitsky’s bijection!



Lower Bound on |C(w0)|

Some notation:

• Bk := |C(w0)| where w0 ∈ Sk
• w3k := [2k+ 1, . . . 3n, k+ 1, . . . , 2k, 1, . . . k] ∈ S3k

Observation
A lower bound for B3k is B3k ≥ |C(w3k)| · B3k.

How do we estimate |C(w3k)|?

Count rhombic tilings via Elnitsky’s bijection!



Lower Bound on |C(w0)|

Some notation:

• Bk := |C(w0)| where w0 ∈ Sk
• w3k := [2k+ 1, . . . 3n, k+ 1, . . . , 2k, 1, . . . k] ∈ S3k

Observation
A lower bound for B3k is B3k ≥ |C(w3k)| · B3k.

How do we estimate |C(w3k)|?

Count rhombic tilings via Elnitsky’s bijection!



Lower Bound on |C(w0)|

Some notation:

• Bk := |C(w0)| where w0 ∈ Sk
• w3k := [2k+ 1, . . . 3n, k+ 1, . . . , 2k, 1, . . . k] ∈ S3k

Observation
A lower bound for B3k is B3k ≥ |C(w3k)| · B3k.

How do we estimate |C(w3k)|?

Count rhombic tilings via Elnitsky’s bijection!



Lower Bound on |C(w0)|

Example (k = 2)
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Lower Bound on |C(w0)|

Definition
A plane partition is a matrix of nonnegative integers πi,j such that
πi,j ≥ πi,j+1 and πi,j ≥ πi+1,j.

The plane partition 2 1
1 0
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Definition
A plane partition is a matrix of nonnegative integers πi,j such that
πi,j ≥ πi,j+1 and πi,j ≥ πi+1,j.

The plane partition 2 1
1 0



Lower Bound on |C(w0)|

Lemma
The commutation classes of w3k are in bijection with k× k plane
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What is the constant c in the exponent?

• (Knuth, 1992) ∼ 0.1667 ≤ c ≤ ∼ 0.7924
• (Felsner, 1997) c ≤ ∼ 0.6974
• (Felsner and Valtr, 2011) ∼ 0.1887 ≤ c ≤∼ 0.6571
• (Dumitrescu and Mandal, 2020) ∼ 0.2083 ≤ c



Open Problems

• Can a better lower bound be obtained via a decomposition into
4 blocks?

• Is there a criterion for realizable weaving patterns?
• How are the sizes of commutation classes distributed?



Open Problems

• Can a better lower bound be obtained via a decomposition into
4 blocks?

• Is there a criterion for realizable weaving patterns?

• How are the sizes of commutation classes distributed?



Open Problems

• Can a better lower bound be obtained via a decomposition into
4 blocks?

• Is there a criterion for realizable weaving patterns?
• How are the sizes of commutation classes distributed?



Thank You!
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