Commutation Classes of Permutations

Herman Chau

University of Washington

Commutation Classes of [4321]

What is a Commutation Class?

Permutations

$S_{n}:=$ symmetric group on n elements

Permutations

$S_{n}:=$ symmetric group on n elements
$\sigma_{i}:=$ adjacent transposition swapping i and $i+1$

Permutations

$S_{n}:=$ symmetric group on n elements
$\sigma_{i}:=$ adjacent transposition swapping i and $i+1$
The longest permutation w_{0} sends $i \mapsto n-i+1$.

Permutations

$S_{n}:=$ symmetric group on n elements
$\sigma_{i}:=$ adjacent transposition swapping i and $i+1$
The longest permutation w_{0} sends $i \mapsto n-i+1$.
Example ($n=4$)

$$
\begin{aligned}
W_{0} & =\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
4 & 3 & 2 & 1
\end{array}\right] \\
& =\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}
\end{aligned}
$$

Permutations

$S_{n}:=$ symmetric group on n elements
$\sigma_{i}:=$ adjacent transposition swapping i and $i+1$
The longest permutation w_{0} sends $i \mapsto n-i+1$.
Example ($n=4$)

$$
\begin{aligned}
W_{0} & =\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{llll}
4 & 3 & 2 & 1
\end{array}\right] \\
& =\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}
\end{aligned}
$$

Wiring Diagrams

Wiring Diagrams

Wiring Diagrams

Reduced Expressions

Definition

A reduced expression for $w \in S_{n}$ is a product of adjacent transpositions $w=\sigma_{i_{1}} \cdots \sigma_{i_{j}}$ of minimum length. The set of all reduced expressions for w is denoted $\mathcal{R}(w)$.

Reduced Expressions

Definition

A reduced expression for $w \in S_{n}$ is a product of adjacent transpositions $w=\sigma_{i_{1}} \cdots \sigma_{i_{j}}$ of minimum length. The set of all reduced expressions for w is denoted $\mathcal{R}(w)$.

Definition

The length of a permutation w, denoted $\ell(w)$, is the length of any reduced expression for w.

Reduced Expressions

Definition

A reduced expression for $w \in S_{n}$ is a product of adjacent transpositions $w=\sigma_{i_{1}} \cdots \sigma_{i_{j}}$ of minimum length. The set of all reduced expressions for w is denoted $\mathcal{R}(w)$.

Definition

The length of a permutation w, denoted $\ell(w)$, is the length of any reduced expression for w.

Fact

The longest permutation $w_{0} \in S_{n}$ has length $\binom{n}{2}$.

Commutation and Braid Relations

Given a reduced expression of $w \in S_{n}$, we can obtain new reduced expressions via commutation and braid relations.

- Commutation: Let $1 \leq i<i+1<j \leq n-1$. Then $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$.
- Braid: Let $1 \leq i \leq n-2$. Then $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

Commutation and Braid Relations

Given a reduced expression of $w \in S_{n}$, we can obtain new reduced expressions via commutation and braid relations.

- Commutation: Let $1 \leq i<i+1<j \leq n-1$. Then $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$.
- Braid: Let $1 \leq i \leq n-2$. Then $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

Example ($\mathrm{n}=4$)

$$
\begin{gathered}
\sigma_{1} \sigma_{2} \underline{\boldsymbol{\sigma}_{3} \boldsymbol{\sigma}_{1}} \sigma_{2} \sigma_{1} \stackrel{\text { commute }}{=} \sigma_{1} \sigma_{2} \underline{\boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{3}} \sigma_{2} \sigma_{1} \\
\sigma_{1} \sigma_{2} \sigma_{3} \boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \stackrel{\text { braid }}{=} \sigma_{1} \sigma_{2} \sigma_{3} \underline{\boldsymbol{\sigma}_{2} \boldsymbol{\sigma}_{1} \boldsymbol{\sigma}_{2}}
\end{gathered}
$$

Commutation and Braid Relations

\downarrow commute $\sigma_{3} \sigma_{1}$

Commutation and Braid Relations

\downarrow braid $\sigma_{1} \sigma_{2} \sigma_{1}$

Word Property

Theorem (Matsumoto, Tits)
Any two reduced expressions in $\mathcal{R}(w)$ are connected by a sequence of commutation and braid relations.

Word Property

Theorem (Matsumoto, Tits)

Any two reduced expressions in $\mathcal{R}(w)$ are connected by a sequence of commutation and braid relations.

We can visualize this as a graph G whose vertex set is $\mathcal{R}(w)$ and (ρ_{1}, ρ_{2}) is an edge if and only if ρ_{1}, ρ_{2} differ by a commutation or braid relation.

Reduced Expression Graph for [4, 3, 2, 1]

Commutation Classes

Definition
Two reduced expressions ρ_{1}, ρ_{2} are commutation equivalent, denoted $\rho_{1} \sim \rho_{2}$ if they differ by a series of commutation relations.

Commutation Classes

Definition

Two reduced expressions ρ_{1}, ρ_{2} are commutation equivalent, denoted $\rho_{1} \sim \rho_{2}$ if they differ by a series of commutation relations.

Definition

$\mathcal{C}(w):=\mathcal{R}(w) / \sim$ is the set of commutation classes of w.

Reduced Expression Graph for [4, 3, 2, 1]

Commutation Class Graph for [4, 3, 2, 1]

Wiring Diagrams of Commutation Classes

Wiring Diagrams of Commutation Classes

Wiring Diagrams of Commutation Classes

Elnitsky's Bijection

Theorem (Elnitsky, 1993)

Let $n \geq 2$. There is a bijection between $\mathcal{C}\left(w_{0}\right)$ and rhombic tilings of the regular $2 n$-gon.

Bijection in S_{4}

Proof Without Words

Bijection for General w

For general $w \in S_{n}, \mathcal{C}(w)$ is in bijection with rhombic tilings of a specific shape, not necessarily the regular $2 n$-gon.

Bijection for General w

For general $w \in S_{n}, \mathcal{C}(w)$ is in bijection with rhombic tilings of a specific shape, not necessarily the regular $2 n$-gon.

Example $(w=[3,4,2,1])$

Counting Commutation Classes

Counting Reduced Expressions of wo

Counting Reduced Expressions of w_{0}

Theorem (Stanley, 1984) (Edelman and Greene, 1987)

The number of reduced expressions $\left|\mathcal{R}\left(w_{0}\right)\right|$ in S_{n} is equal to the number of standard Young tableaux of shape ($n-1, n-2, \ldots, 1$). By the hook-length formula, this is equal to $\binom{n}{2}!/ 1^{n-1} 3^{n-2} \cdots(2 n-3)^{1}$.

Counting Reduced Expressions of w_{0}

Theorem (Stanley, 1984) (Edelman and Greene, 1987)

The number of reduced expressions $\left|\mathcal{R}\left(w_{0}\right)\right|$ in S_{n} is equal to the number of standard Young tableaux of shape ($n-1, n-2, \ldots, 1$). By the hook-length formula, this is equal to $\binom{n}{2}!/ 1^{n-1} 3^{n-2} \cdots(2 n-3)^{1}$.

n	$\left\|\mathcal{R}\left(w_{0}\right)\right\|$
1	1
2	1
3	2
4	16
5	768
6	292864
\ldots	\ldots

Counting Reduced Expressions of w_{0}

Theorem (Stanley, 1984) (Edelman and Greene, 1987)

The number of reduced expressions $\left|\mathcal{R}\left(w_{0}\right)\right|$ in S_{n} is equal to the number of standard Young tableaux of shape ($n-1, n-2, \ldots, 1$). By the hook-length formula, this is equal to $\binom{n}{2}!/ 1^{n-1} 3^{n-2} \cdots(2 n-3)^{1}$.

n	$\left\|\mathcal{R}\left(w_{0}\right)\right\|$
1	1
2	1
3	2
4	16
5	768
6	292864
\ldots	\ldots

Asymptotically, $\left|\mathcal{R}\left(w_{0}\right)\right|=2^{\Theta\left(n^{2} \log n\right)}$.

Counting Commutation Classes of w_{0}

No exact formula is known for the number of commutation classes $\left|\mathcal{C}\left(w_{0}\right)\right|$.

Counting Commutation Classes of w_{0}

No exact formula is known for the number of commutation classes $\left|\mathcal{C}\left(w_{0}\right)\right|$.

n	$\left\|\mathcal{C}\left(w_{0}\right)\right\|$
1	1
2	1
3	2
4	8
5	62
6	908
\ldots	\ldots

Counting Commutation Classes of w_{0}

No exact formula is known for the number of commutation classes $\left|\mathcal{C}\left(w_{0}\right)\right|$.

n	$\left\|\mathcal{C}\left(w_{0}\right)\right\|$
1	1
2	1
3	2
4	8
5	$62=2 \times 31$
6	$908=2^{2} \times 227$
\ldots	\ldots

Asymptotics of $\left|\mathcal{C}\left(w_{0}\right)\right|$

Theorem (Knuth, 1992)
The number of commutation classes of the longest word $w_{0} \in S_{n}$ grows as $2^{\Theta\left(n^{2}\right)}$.

Asymptotics of $\left|\mathcal{C}\left(w_{0}\right)\right|$

Theorem (Knuth, 1992)

The number of commutation classes of the longest word $w_{0} \in S_{n}$ grows as $2^{\Theta\left(n^{2}\right)}$.

What is the constant c in the exponent?

- (Knuth, 1992) $\sim 0.1667 \leq c \leq \sim 0.7924$
- (Felsner, 1997) $c \leq \sim 0.6974$
- (Felsner and Valtr, 2011) $\sim 0.1887 \leq c \leq \sim 0.6571$
- (Dumitrescu and Mandal, 2020) $\sim 0.2083 \leq c$

Asymptotics of $\left|\mathcal{C}\left(w_{0}\right)\right|$

Theorem (Knuth, 1992)

The number of commutation classes of the longest word $w_{0} \in S_{n}$ grows as $2^{\Theta\left(n^{2}\right)}$.

What is the constant c in the exponent?

- (Knuth, 1992) $\sim 0.1667 \leq c \leq \sim 0.7924$
- (Felsner, 1997) $\quad c \leq \sim 0.6974$
- (Felsner and Valtr, 2011) $\sim 0.1887 \leq c \leq \sim 0.6571$
- (Dumitrescu and Mandal, 2020) $\sim 0.2083 \leq c$

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Definition

Let $\bar{\rho} \in \mathcal{C}\left(w_{0}\right)$. The weaving pattern of ρ is a function $P_{\bar{\rho}}:[n] \rightarrow\{+,-\}^{*}$ that records the sequence of up (+) and down $(-)$ crossings in the wiring diagram of $\bar{\rho}$.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Definition

Let $\bar{\rho} \in \mathcal{C}\left(w_{0}\right)$. The weaving pattern of ρ is a function $P_{\bar{\rho}}:[n] \rightarrow\{+,-\}^{*}$ that records the sequence of up (+) and down $(-)$ crossings in the wiring diagram of $\bar{\rho}$.

Example

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Proof.

It suffices to find an inverse map that takes a weaving pattern $P_{\bar{\rho}}$ back to a commutation class $\bar{\rho}$.

1. Find i and $i+1$ such that $P_{\bar{\rho}}(i)$ begins with $a+$ and $P_{\bar{\rho}}(i+1)$ begins with a - .
2. Record σ_{i}, delete the leading + and - , and swap rows i and $i+1$ in the weaving pattern.
3. Repeat until the weaving pattern is empty.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.
Example

4	---
3	--+
2	-++
1	+++

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Example

4	---
3	--+
2	-++
1	+++

Rows 1 and 2 have a leading + and - respectively.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Example

$$
\begin{array}{l|ll}
4 & --- & \\
3 & --+ & \\
2 & ++ & \sigma_{1} \\
1 & ++ &
\end{array}
$$

Delete leading signs, swap, and record σ_{1}.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Example

$$
\begin{array}{l|ll}
4 & --- & \\
3 & --+ & \\
2 & ++ & \sigma_{1} \\
1 & ++ &
\end{array}
$$

Rows 2 and 3 have a leading + and - respectively.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Example

$$
\begin{array}{l|ll}
4 & --- & \\
3 & + & \sigma_{1} \sigma_{2} \\
2 & -+ & \\
1 & ++ &
\end{array}
$$

Delete leading signs, swap, and record σ_{2}.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Example

$$
\begin{array}{l|ll}
4 & --- & \\
3 & + & \sigma_{1} \sigma_{2} \\
2 & -+ & \\
1 & ++ &
\end{array}
$$

Choice of either rows 1 and 2, or rows 3 and 4 .

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.
Example

$$
\begin{array}{l|ll}
4 & --- & \\
3 & + & \\
2 & -+ & \sigma_{1} \sigma_{2} \\
1 & ++ &
\end{array}
$$

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.
Example

4		
3	--	
2	-+	$\sigma_{1} \sigma_{2} \sigma_{3}$
1	++	

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.
Example

$$
\begin{array}{l|ll}
4 & & \\
3 & -- & \\
2 & + & \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \\
1 & + &
\end{array}
$$

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.
Example

4	
3	
2	-
1	$-\quad \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2}$

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Example

$\overline{\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}}$ is the desired commutation class.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma
The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.
Observation
For any $\bar{\rho} \in \mathcal{C}\left(w_{0}\right)$, the ith row $P_{\bar{\rho}}(i)$ has $(n-i)+$'s and $(i-1)-$'s.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The map $\bar{\rho} \mapsto P_{\bar{\rho}}$ is an injection.
Observation
For any $\bar{\rho} \in \mathcal{C}\left(w_{0}\right)$, the ith row $P_{\bar{\rho}}(i)$ has $(n-i)+$'s and $(i-1)$-'s.
Theorem
The number of commutation classes of w_{0} is at most $\prod_{i=1}^{n}\binom{n-1}{n-i}$.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Theorem

The number of commutation classes of w_{0} is at most $\prod_{i=1}^{n}\binom{n-1}{n-i}$.
Taking logarithms,

$$
\log \prod_{i=1}^{n}\binom{n-1}{n-i} \leq n \log (n-1)!-2 \sum_{i=0}^{n-1} \log j!
$$

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Theorem
The number of commutation classes of w_{0} is at most $\prod_{i=1}^{n}\binom{n-1}{n-i}$.
Taking logarithms,

$$
\begin{aligned}
\log \prod_{i=1}^{n}\binom{n-1}{n-i} & \leq n \log (n-1)!-2 \sum_{i=0}^{n-1} \log i! \\
& \approx n^{2} \log (n-1)-2 \sum_{i=0}^{n-1} i \log i \quad \text { (by Stirling's) }
\end{aligned}
$$

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Theorem

The number of commutation classes of w_{0} is at most $\prod_{i=1}^{n}\binom{n-1}{n-i}$.

Taking logarithms,

$$
\begin{aligned}
\log \prod_{i=1}^{n}\binom{n-1}{n-i} & \leq n \log (n-1)!-2 \sum_{i=0}^{n-1} \log i! \\
& \approx n^{2} \log (n-1)-2 \sum_{i=0}^{n-1} i \log i \quad \text { (by Stirling's) } \\
& \approx n^{2} \log (n-1)-2 \int_{0}^{n-1} x \log x d x
\end{aligned}
$$

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Theorem

The number of commutation classes of w_{0} is at most $\prod_{i=1}^{n}\binom{n-1}{n-i}$.
Taking logarithms,

$$
\begin{aligned}
\log \prod_{i=1}^{n}\binom{n-1}{n-i} & \leq n \log (n-1)!-2 \sum_{i=0}^{n-1} \log i! \\
& \approx n^{2} \log (n-1)-2 \sum_{i=0}^{n-1} i \log i \quad \text { (by Stirling's) } \\
& \approx n^{2} \log (n-1)-2 \int_{0}^{n-1} x \log x d x \\
& \approx \frac{1}{2} n^{2} .
\end{aligned}
$$

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Theorem

The number of commutation classes of w_{0} is at most $\prod_{i=1}^{n}\binom{n-1}{n-i}$.
Taking logarithms,

$$
\begin{aligned}
\log \prod_{i=1}^{n}\binom{n-1}{n-i} & \leq n \log (n-1)!-2 \sum_{i=0}^{n-1} \log i! \\
& \approx n^{2} \log (n-1)-2 \sum_{i=0}^{n-1} i \log i \quad \text { (by Stirling's) } \\
& \approx n^{2} \log (n-1)-2 \int_{0}^{n-1} x \log x d x \\
& \approx \frac{1}{2} n^{2} .
\end{aligned}
$$

So $\left|\mathcal{C}\left(w_{0}\right)\right| \leq e^{n^{2} / 2}=2^{n^{2} \log _{2}(e) / 2}$ and $\frac{1}{2} \log _{2}(e) \approx 0.7213$.

Upper Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

What is the constant c in the exponent?

- (Knuth, 1992) $\sim 0.1667 \leq c \leq \sim 0.7924$
- (Felsner, 1997) $\quad c \leq \sim 0.6974$
- (Felsner and Valtr, 2011) $\sim 0.1887 \leq c \leq \sim 0.6571$
- (Dumitrescu and Mandal, 2020) $\sim 0.2083 \leq c$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Idea

Suppose $n=3 k$. Count commutation classes of the form $\overline{\rho_{0} \rho_{1} \rho_{2} \rho_{3}}$, where

- ρ_{0} yields $[\underline{2 k+1, \ldots, 3 k}, \underline{k+1, \ldots, 2 k}, \underline{1, \ldots, k]}$,
- ρ_{1} yields $[1, \ldots, k, k+1, \ldots, 2 k, 3 k, \ldots, 2 k+1]$,
- ρ_{2} yields $[1, \ldots, k, 2 k, \ldots, k+1,2 k+1, \ldots, 3 k]$,
- ρ_{3} yields $[k, \ldots, 1, k+1, \ldots, 2 k, 2 k+1, \ldots, 3 k]$.

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Some notation:

- $B_{k}:=\left|\mathcal{C}\left(w_{0}\right)\right|$ where $w_{0} \in S_{k}$
- $w_{3 k}:=[2 k+1, \ldots 3 n, k+1, \ldots, 2 k, 1, \ldots k] \in S_{3 k}$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Some notation:

- $B_{k}:=\left|\mathcal{C}\left(w_{0}\right)\right|$ where $w_{0} \in S_{k}$
- $w_{3 k}:=[2 k+1, \ldots 3 n, k+1, \ldots, 2 k, 1, \ldots k] \in S_{3 k}$

Observation

A lower bound for $B_{3 k}$ is $B_{3 k} \geq\left|\mathcal{C}\left(w_{3 k}\right)\right| \cdot B_{k}^{3}$.

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Some notation:

- $B_{k}:=\left|\mathcal{C}\left(w_{0}\right)\right|$ where $w_{0} \in S_{k}$
- $w_{3 k}:=[2 k+1, \ldots 3 n, k+1, \ldots, 2 k, 1, \ldots k] \in S_{3 k}$

Observation

A lower bound for $B_{3 k}$ is $B_{3 k} \geq\left|\mathcal{C}\left(w_{3 k}\right)\right| \cdot B_{k}^{3}$.
How do we estimate $\left|\mathcal{C}\left(w_{3 k}\right)\right|$?

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Some notation:

- $B_{k}:=\left|\mathcal{C}\left(w_{0}\right)\right|$ where $w_{0} \in S_{k}$
- $w_{3 k}:=[2 k+1, \ldots 3 n, k+1, \ldots, 2 k, 1, \ldots k] \in S_{3 k}$

Observation

A lower bound for $B_{3 k}$ is $B_{3 k} \geq\left|\mathcal{C}\left(w_{3 k}\right)\right| \cdot B_{k}^{3}$.
How do we estimate $\left|\mathcal{C}\left(w_{3 k}\right)\right|$?
Count rhombic tilings via Elnitsky's bijection!

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Example ($\mathrm{k}=2$)

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Example ($\mathrm{n}=2$)

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Definition

A plane partition is a matrix of nonnegative integers $\pi_{i, j}$ such that $\pi_{i, j} \geq \pi_{i, j+1}$ and $\pi_{i, j} \geq \pi_{i+1, j}$.

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Definition

A plane partition is a matrix of nonnegative integers $\pi_{i, j}$ such that $\pi_{i, j} \geq \pi_{i, j+1}$ and $\pi_{i, j} \geq \pi_{i+1, j}$.

The plane partition $\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The commutation classes of $w_{3 k}$ are in bijection with $k \times k$ plane partitions with entries at most k.

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Lemma

The commutation classes of $w_{3 k}$ are in bijection with $k \times k$ plane partitions with entries at most k.

Theorem (MacMahon, 1916)

The number of $i \times j$ plane partitions with entries at most k is equal to

$$
\prod_{a=0}^{i-1} \prod_{b=0}^{j-1} \prod_{c=0}^{k-1} \frac{a+b+c+2}{a+b+c+1}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

To approximate the number of such $k \times k$ plane partitions with entries at most k, we take logarithms.

$$
\log \prod_{0 \leq a, b, c \leq k-1} \frac{a+b+c+2}{a+b+c+1}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

To approximate the number of such $n \times n$ plane partitions with entries at most k, we take logarithms.

$$
\begin{aligned}
& \log \prod_{0 \leq a, b, c \leq k-1} \frac{a+b+c+2}{a+b+c+1} \\
= & \sum_{0 \leq a, b, c \leq k-1} \log (a+b+c+2)-\log (a+b+c+1)
\end{aligned}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

To approximate the number of such $k \times k$ plane partitions with entries at most k, we take logarithms.

$$
\begin{aligned}
& \log \prod_{0 \leq a, b, c \leq k-1} \frac{a+b+c+2}{a+b+c+1} \\
= & \sum_{0 \leq a, b, c \leq k-1} \log (a+b+c+2)-\log (a+b+c+1) \\
= & \sum_{0 \leq a, b \leq k-1} \log (a+b+n+1)-\log (a+b+1)
\end{aligned}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

To approximate the number of such $k \times k$ plane partitions with entries at most k, we take logarithms.

$$
\begin{aligned}
& \log \prod_{0 \leq a, b, c \leq k-1} \frac{a+b+c+2}{a+b+c+1} \\
= & \sum_{0 \leq a, b, c \leq k-1} \log (a+b+c+2)-\log (a+b+c+1) \\
= & \sum_{0 \leq a, b \leq k-1}^{k-1} \log (a+b+k+1)-\log (a+b+1) \\
\approx & \int_{x=0}^{k-1} \int_{y=0}^{k-1} \log (x+y+k+1)-\log (x+y+1) d y d x
\end{aligned}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

To approximate the number of such $k \times k$ plane partitions with entries at most k, we take logarithms.

$$
\begin{aligned}
& \log \prod_{0 \leq a, b, c \leq k-1} \frac{a+b+c+2}{a+b+c+1} \\
= & \sum_{0 \leq a, b, c \leq k-1} \log (a+b+c+2)-\log (a+b+c+1) \\
= & \sum_{0 \leq a, b \leq k-1}^{k-1} \log (a+b+k+1)-\log (a+b+1) \\
\approx & \int_{x=0}^{k-1} \int_{y=0}^{k-1} \log (x+y+k+1)-\log (x+y+1) d y d x \\
\approx & \left(\frac{9}{2} \ln (3)-6 \ln (2)\right) k^{2}
\end{aligned}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

To approximate the number of such $k \times k$ plane partitions with entries at most k, we take logarithms.

$$
\begin{aligned}
& \log \prod_{0 \leq a, b, c \leq k-1} \frac{a+b+c+2}{a+b+c+1} \\
= & \sum_{0 \leq a, b, c \leq k-1} \log (a+b+c+2)-\log (a+b+c+1) \\
= & \sum_{0 \leq a, b \leq k-1}^{k-1} \log (a+b+k+1)-\log (a+b+1) \\
\approx & \int_{x=0}^{k-1} \int_{y=0}^{k-1} \log (x+y+k+1)-\log (x+y+1) d y d x \\
\approx & \left(\frac{9}{2} \ln (3)-6 \ln (2)\right) k^{2} \\
\approx & 0.7848 k^{2} .
\end{aligned}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

To approximate the number of such $k \times k$ plane partitions with entries at most k, we take logarithms.

$$
\begin{aligned}
& \log \prod_{0 \leq a, b, c \leq k-1} \frac{a+b+c+2}{a+b+c+1} \\
= & \sum_{0 \leq a, b, c \leq k-1} \log (a+b+c+2)-\log (a+b+c+1) \\
= & \sum_{0 \leq a, b \leq k-1}^{k-1} \log (a+b+k+1)-\log (a+b+1) \\
\approx & \int_{x=0}^{k-1} \int_{y=0}^{k-1} \log (x+y+k+1)-\log (x+y+1) d y d x \\
\approx & \left(\frac{9}{2} \ln (3)-6 \ln (2)\right) k^{2} \\
\approx & 0.7848 k^{2} .
\end{aligned}
$$

This yields $\left|\mathcal{C}\left(w_{3 k}\right)\right| \approx e^{0.7848 k^{2}}$.

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Finally, we derive our lower bound

$$
B_{3 k} \geq e^{0.7848 k^{2}} \cdot B_{k}^{3}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Finally, we derive our lower bound

$$
\begin{aligned}
B_{3 k} & \geq e^{0.7848 k^{2}} \cdot B_{k}^{3} \\
& \geq e^{0.7848 k^{2}} \cdot\left(e^{0.7848(k / 3)^{2}}\right)^{3} \cdot B_{k / 3}^{3^{2}}
\end{aligned}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Finally, we derive our lower bound

$$
\begin{aligned}
B_{3 k} & \geq e^{0.7848 k^{2}} \cdot B_{k}^{3} \\
& \geq e^{0.7848 k^{2}} \cdot\left(e^{0.7848(k / 3)^{2}}\right)^{3} \cdot B_{k / 3}^{3^{2}} \\
& \approx \prod_{i=0}^{\left\lfloor\log _{3}(k)\right\rfloor} e^{0.7848 k^{2} / 3^{i}}
\end{aligned}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Finally, we derive our lower bound

$$
\begin{aligned}
B_{3 k} & \geq e^{0.7848 k^{2}} \cdot B_{k}^{3} \\
& \geq e^{0.7848 k^{2}} \cdot\left(e^{0.7848(k / 3)^{2}}\right)^{3} \cdot B_{k / 3}^{3^{2}} \\
& \approx \prod_{i=0}^{\left\lfloor\log _{3}(k)\right\rfloor} e^{0.7848 k^{2} / 3^{i}} \\
& \approx e^{0.7848 k^{2} \cdot 3 / 2}
\end{aligned}
$$

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

Finally, we derive our lower bound

$$
\begin{aligned}
B_{3 k} & \geq e^{0.7848 k^{2}} \cdot B_{k}^{3} \\
& \geq e^{0.7848 k^{2}} \cdot\left(e^{0.7848(k / 3)^{2}}\right)^{3} \cdot B_{k / 3}^{3^{2}} \\
& \approx \prod_{i=0}^{\left\lfloor\log _{3}(k)\right\rfloor} e^{0.7848 k^{2} / 3^{i}} \\
& \approx e^{0.7848 k^{2} \cdot 3 / 2}
\end{aligned}
$$

Thus, $\log _{2}\left(B_{3 k}\right) \approx \log _{2}(e) \cdot 0.7848 \cdot \frac{3}{2} \cdot \frac{1}{3^{2}} k^{2} \approx 0.1887 k^{2}$.

Lower Bound on $\left|\mathcal{C}\left(w_{0}\right)\right|$

What is the constant c in the exponent?

- (Knuth, 1992) $\sim 0.1667 \leq c \leq \sim 0.7924$
- (Felsner, 1997) $c \leq \sim 0.6974$
- (Felsner and Valtr, 2011) $\sim 0.1887 \leq c \leq \sim 0.6571$
- (Dumitrescu and Mandal, 2020) $\sim 0.2083 \leq c$

Open Problems

- Can a better lower bound be obtained via a decomposition into 4 blocks?

Open Problems

- Can a better lower bound be obtained via a decomposition into 4 blocks?
- Is there a criterion for realizable weaving patterns?

Open Problems

- Can a better lower bound be obtained via a decomposition into 4 blocks?
- Is there a criterion for realizable weaving patterns?
- How are the sizes of commutation classes distributed?

Thank You!

