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1 Introduction

Our objective in this paper is to prove a rather broad generalization of some classical theorems
in Iwasawa theory. We begin by recalling two of those old results. The first is a theorem
of Iwasawa, which we state in terms of Galois cohomology. Suppose that K is a totally
real number field, that F is a totally complex quadratic extension of K, and that ψ is the
nontrivial character of Gal(F/K), viewed as a character of the absolute Galois group GK .
Let p be an odd prime and let D be the Galois module which is isomorphic to Qp/Zp as a
group and on which GK acts by ψ. Let K∞ denote the cyclotomic Zp-extension of K. Thus
Γ = Gal(K∞/K) is isomorphic to Zp. Define S(K∞, D) to be the subgroup of H1(K∞, D)
consisting of everywhere unramified cocycle classes. As is usual in Iwasawa theory, we can
view S(K∞, D) as a discrete Λ-module, where Λ = Zp[[Γ]] is the completed group algebra for
Γ over Zp. Iwasawa’s theorem asserts that the Pontryagin dual of S(K∞, D) has no nonzero,
finite Λ-submodule.

The Selmer group for the above Galois module D, as defined in [Gr1], is precisely
S(K∞, D). One can identify it with Hom(X(ψ), D), where X is a certain Galois group on
which Gal(F/K) acts. To be precise, one takes X = Gal(L∞/F∞), where F∞ = FK∞ and
L∞ denotes the maximal, abelian pro-p extension of F∞ which is unramified at all primes of
F∞. There is a canonical action of G = Gal(F∞/K) on X (defined by conjugation). Further-
more, one has G ∼= ∆ × Γ, where ∆ = Gal(F/K) (identified with Gal(F∞/K∞) and Γ is as
above. We define X(ψ) to be eψX, where eψ ∈ Zp[∆] is the idempotent for ψ. Iwasawa proved
that X(ψ) has no nonzero, finite Λ-submodules. The theorem stated above is equivalent to
that result. We should also mention the well-known fact that X is a finitely-generated, tor-
sion Λ-module, an earlier theorem of Iwasawa. Thus, the same statements are true for X(ψ)

and so we say that S(K∞, D) is cofinitely generated and cotorsion as a Λ-module.
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To state the second classical result, suppose that K is any number field and that E is
an elliptic curve defined over K with good, ordinary reduction at the primes of K lying
above p. The p-primary subgroup SelE(K∞)p of the Selmer group for E over K∞ is again
a discrete Λ-module. Its Pontryagin dual XE(K∞) is a finitely-generated Λ-module. Mazur
conjectured that XE(K∞) is a torsion Λ-module. If this is so, and if one makes the additional
assumption that E(K) has no element of order p, then one can show that XE(K∞) has no
nonzero, finite Λ-submodule.

The above results take the following form: S is a certain discrete Λ-module. The Pon-
tryagin dual X = Hom(S,Qp/Zp) is finitely generated as a Λ-module. The results assert
that X has no nonzero finite Λ-submodule. An equivalent statement about S is the follow-
ing: There exists a nonzero element θ ∈ Λ such that πS = S for all irreducible elements
π ∈ Λ not dividing θ. We then say that S is an “almost divisible” Λ-module. Note that
Λ is isomorphic to Zp[[T ]], a formal power series ring over Zp in one variable, and hence is
a unique factorization domain. Thus, one can equivalently say that λS = S for all λ ∈ Λ
which are relatively prime to θ. This definition makes sense in a much more general setting,
as we now describe.

Suppose that Λ is isomorphic to a formal power series ring over Zp, or over Fp, in a
finite number of variables. Suppose that S is a discrete Λ-module and that its Pontryagin
dual X is finitely generated. We then say that S is cofinitely generated. We say that S
is almost divisible if any one of the five equivalent statements given below is satisfied. In
the statements, the set of prime ideals of Λ of height 1 is denoted by Specht=1(Λ). Note
that since Λ is a UFD, all such prime ideals Π are principal. Also, if we say almost all, we
mean all but finitely many. The notation X [Π] denotes the Λ-submodule of X consisting of
elements annihilated by Π. This is also denoted by X [π], where π is a generator of Π.

• We have ΠS = S for almost all Π ∈ Specht=1(Λ).

• There exists a nonzero element θ in Λ such that πS = S for all irreducible elements π of
Λ not dividing θ.

• We have X [Π] = 0 for almost all Π ∈ Specht=1(Λ).

• The set AssΛ(Y) of associated prime ideals for the torsion Λ-submodule Y of X contains
only prime ideals of height 1.

• The Λ-module X has no nonzero, pseudo-null submodules.

If it is not sufficiently clear from the context, we may say that S is almost divisible as a
Λ-module, or just almost Λ-divisible. We refer the reader to [Gr4] for further discussion,
including an explanation of the equivalence of all of the above statements.
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We will consider “Selmer groups” that arise in the following very general context. Suppose
that K is a finite extension of Q and that Σ is a finite set of primes of K. Let KΣ denote the
maximal extension of K unramified outside of Σ. We assume that Σ contains all archimedean
primes and all primes lying over some fixed rational prime p. The Selmer groups that we
consider in this article are associated to a continuous representation

ρ : Gal(KΣ/K)−→GLn(R)

where R is a complete Noetherian local ring. Let M denote the maximal ideal of R. We
assume that the residue field R/M is finite and has characteristic p. Hence R is compact in
its M-adic topology. Let T be the underlying free R-module on which Gal(KΣ/K) acts via

ρ. We define D = T ⊗R R̂, where R̂ = Hom(R,Qp/Zp) is the Pontryagin dual of R with a
trivial action of Gal(KΣ/K). That Galois group acts on D through its action on the first

factor T . Thus, D is a discrete abelian group which is isomorphic to R̂n as an R-module
and which has a continuous R-linear action of Gal(KΣ/K).

The Galois cohomology group H1(KΣ/K,D) can be considered as a discrete R-module
too. It is a cofinitely generated R-module in the sense that its Pontryagin dual is finitely
generated as an R-module. (See Prop. 3.2 in [Gr4].) Suppose that one specifies an R-
submodule L(Kv,D) of H1(Kv,D) for each v ∈ Σ. We will denote such a specification by L
for brevity. Let

P (K,D) =
∏

v∈Σ

H1(Kv,D) and L(K,D) =
∏

v∈Σ

L(Kv,D) .

Thus, L(K,D) is an R-submodule of P (K,D). Let QL(K,D) = P (K,D)
/
L(K,D). Thus,

QL(K,D) =
∏

v∈Σ

QL(Kv,D), where QL(Kv,D) = H1(Kv,D)
/
L(Kv,D) .

The natural global-to-local restriction maps for H1( · ,D) induce a map

(1) φL : H1(KΣ/K,D) −→ QL(K,D) .

The kernel of φL will be denoted by SL(K,D). It is the “Selmer group” for D over K
corresponding to the specification L.

It is clear that SL(K,D) is an R-submodule of H1(KΣ/K,D) and so is also a discrete,
cofinitely generated R-module. For a fixed set Σ, the smallest possible Selmer group occurs
when we take L(Kv,D) = 0 for all v ∈ Σ. The Selmer group corresponding to that choice
will be denoted by X

1(K,Σ,D). That is,

X
1(K,Σ,D) = ker

(
H1(KΣ/K,D) −→

∏

v∈Σ

H1(Kv,D)
)
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Obviously, we have X
1(K,Σ,D) ⊆ SL(K,D) for any choice of the specification L.

In addition to the above assumptions about R, suppose that R is a domain. Let d = m+1
denote the Krull dimension of R, where m ≥ 0. (We will assume that R is not a field. Our
results are all trivial in that case.) A theorem of Cohen [Coh] implies that R is a finite,
integral extension of a subring Λ which is isomorphic to one of the formal power series
rings Zp[[T1, ..., Tm]] or Fp[[T1, ..., Tm+1]], depending on whether R has characteristic 0 or
p. Although such a subring is far from unique, it will be convenient to just fix a choice.
A cofinitely generated R-module S will also be a cofinitely generated Λ-module. All the
results that we will prove in this paper could be viewed as statements about the structure of
the Selmer groups as R-modules. But they are equivalent to the corresponding statements
about their structure as Λ-modules and that is how we will formulate and prove them. Those
equivalences are discussed in some detail in [Gr4], section 2. In particular, if S is a discrete,
cofinitely generated R-module, then we say that S is divisible (resp., almost divisible) as
an R-module if PS = S for all (resp., almost all) P ∈ Specht=1(R). One result is that S
is almost divisible as an R-module if and only if S is almost divisible as a Λ-module. (See
statement 1 on page 372 of [Gr4].) A similar equivalence is true for divisibility, but quite
easy to prove.

One basic assumption that we will make about R is that it contain a subring Λ of the
form described in the previous paragraph, that R is finitely-generated as a Λ-module, and
that R is also reflexive as a Λ-module. If these assumptions are satisfied, we say that R is a
“reflexive ring”. In the case where R is also assumed to be a domain, one can equivalently
require that R is the intersection of all its localizations at prime ideals of height 1. See part
D, section 2 in [Gr4] for the explanation of the equivalence. In the literature, one sometimes
finds the term “weakly Krull domain” for such a domain. The class of reflexive domains is
rather large. For example, if R is integrally closed or Cohen-Macaulay, then it turns out that
R is reflexive. There are important examples (from Hida theory), where R is not necessarily
a domain, but is still a free (and hence reflexive) module over a suitable subring Λ.

The main results of this paper assert that if we make certain hypotheses about D and
L, then SL(K,D) will be almost divisible. Some of the hypotheses are those needed for
theorem 1 in [Gr4] which gives sufficient conditions for H1(KΣ/K,D) itself to be almost
divisible. That theorem will be stated later (as proposition 2.6.1.) and is our starting point.
The basic approach for deducing the almost divisibility of a Λ-submodule of H1(KΣ/K,D),
defined by imposing local conditions corresponding to a specification L, will be described in
section 3. Some of the needed hypotheses will be discussed in section 2. We also state there
some results from from [Gr5] concerning the surjectivity of the map φL. We will apply those
results not just to D, but also to the corresponding map for D[Π], where Π ∈ Specht=1(Λ).
Our main results concerning the almost divisibility of SL(K,D) will be proved in section 4.1.

4



We show in section 4.2 how to prove the two classical theorems mentioned above from the
point of view of this paper.

This paper is part of a series of papers concerning foundational questions in Iwasawa
theory. The results discussed above depend on the results proved in [Gr4] and [Gr5], the
first of this series. A subsequent paper will use the results we prove here to study the
behavior of Selmer groups under specialization. In particular, one would like to understand
how the “characteristic ideal” or “characteristic divisor” for a Selmer group associated to
the representation ρP : Gal(KΣ/K) −→ GLn(R/P ), the reduction of ρ modulo a prime ideal
P of R, is related to the characteristic ideal or divisor associated to a Selmer group for ρ
itself. Such a question has arisen many times in the past. Consequently, for the purpose
of studying exactly that question, one can find numerous special cases of the results of this
paper in the literature in Iwasawa theory.

2 Various Hypotheses.

The Galois module T is a free R-module and so we say that D is a cofree R-module. We
also define T ∗ = Hom(D, µp∞). We can consider T ∗ as a module over the ring Rop, which is
just R since that ring is commutative. It is clear that T ∗ is also a free R-module and that
D∗ is cofree. It will be simpler and more useful to formulate the hypotheses in terms of their
structure as Λ-modules rather than R-modules.

2.1. Hypotheses involving reflexivity. Recall that Λ is isomorphic to a formal power
series ring in a finite number of variables over either Zp or Fp. Reflexive Λ-modules play an
important role here. A detailed discussion of the definition can be found in section 2, part
C, of [Gr4].

RFX(D): The Λ-module T is reflexive.

Equivalently, since T is free as an R-module, RFX(D) means that the ring R is reflexive as a
Λ-module. That is, R is a reflexive ring in the sense defined in the introduction. We are still
assuming that R is a complete Noetherian local ring with finite residue field of characteristic
p.

We will say that D is a coreflexive Λ-module if RFX(D) holds. This terminology is
appropiate because the Pontryagin dual of D is the Λ-module T . One important role of
RFX(D) is to guarantee that D[π] is a divisible (Λ/Π)-module for all prime ideals Π = (π)
in Λ of height 1. That property is equivalent to requiring that D be coreflexive as a Λ-module.
See corollary 2.6.1 in [Gr4] for the proof.
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The next two hypotheses involve T ∗ and are of a local nature. They could be formulated
just in terms of D, but the statements would become more complicated. Note that if RFX(D)
holds, then T ∗ is a reflexive Λ-module. We suppose that v is a prime of K and that Kv is
the completion of K at v. We usually consider just the primes v ∈ Σ.

LOC
(1)
v (D): (T ∗)GKv = 0 .

LOC
(2)
v (D): The Λ-module T ∗/(T ∗)GKv is reflexive.

Assumptions LOC
(1)
v (D) and LOC

(2)
v (D) play a crucial role in proving theorem 1 in [Gr4].

Just as in that result, we will usually assume LOC
(1)
v (D) for at least one non-archimedean

prime v ∈ Σ and LOC
(2)
v (D) for all v ∈ Σ. One can find a general discussion of when those

hypotheses are satisfied in part F, section 5 of loc cit. One obvious remark is that since T ∗

is a torsion-free Λ-module, LOC
(1)
v is satisfied if and only if rankΛ

(
(T ∗)GKv

)
= 0. It is also

obvious that T ∗/(T ∗)GKv is at least torsion-free as a Λ-module. Furthermore, note that if

RFX(D) is true, then LOC
(2)
v (D) follows from LOC

(1)
v (D). Notice also that if LOC

(1)
v (D)

and LOC
(2)
v (D) are both true for some prime v, then RFX(D) is also true. Nevertheless,

our propositions will often include RFX(D) as a hypothesis even though it may actually be
implied by other hypotheses.

2.2. Locally trivial cocycle classes. The following much more subtle hypothesis is
also needed in the proof of theorem 1 in [Gr4], where it is referred to as Hypothesis L. As
we explain there, it can be viewed as a generalization of Leopoldt’s Conjecture for number
fields. That special case occurs when Λ = Zp, D = Qp/Zp, and GK acts trivially on D. For
the formulation, we define

X
2(K,Σ,D) = ker

(
H2(KΣ/K,D) −→

∏

v∈Σ

H2(Kv,D)
)
,

which is a discrete, cofinitely-generated Λ-module.

LEO(D): The Λ-module X
2(K,Σ,D) is cotorsion.

A long discussion about the validity of the above hypothesis can be found in the last few
pages of [Gr4]. There are situations where it fails to be satisfied. Also, section 4 of that
paper derives a natural lower bound on the Λ-corank of H1(KΣ/K,D) from the duality
theorems of Poitou and Tate. Hypothesis LEO(D) is equivalent to the statement that
corankΛ

(
H1(KΣ/K,D)

)
is equal to that lower bound. That equivalence is the content of

propositions 4.3 and 4.4 in [Gr4].
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2.3. Hypotheses involving L. None of the hypotheses stated above involves the
specification L. We now mention two hypotheses which do involve L, one of which implies
the other. They are statements about the cokernel of the map φL defined in the introduction.
The first plays an important role in studying Selmer groups. The second appears weaker,
but often is sufficient to imply the first.

SUR(D,L): The map φL defining SL(K,D) is surjective.

An obvious necessary condition for this to be satisfied is the following equality for the coranks:

CRK(D,L): corankΛ

(
H1(KΣ/K,D)

)
= corankΛ

(
SL(K,D)

)
+ corankΛ

(
QL(K,D)

)
.

This just means that coker
(
φL

)
is a cotorsion Λ-module. Proposition 3.2.1 in [Gr5] shows

that CRK(D,L), together with various additional assumptions, actually implies SUR(D,L).
One has the following obvious inequality:

(2) corankΛ

(
SL(K,D)

)
≥ corankΛ

(
H1(KΣ/K,D)

)
− corankΛ

(
QL(K,D)

)

Thus, CRK(D,L) is equivalent to having equality here. Of course, CRK(D,L), and hence
SUR(D,L), can fail simply because the quantity on the right side is negative. Verifying
CRK(D,L) is quite a difficult problem in many interesting cases.

It is worth recalling what the formulas for global and local Euler-Poincaré characteristics
tell us about the coranks on the right side of (2). One can find proofs in section 4 of [Gr4].
For any prime v of K, we use the notation D(Kv) as an abbreviation for H0(Kv,D), a
Λ-submodule of D. Similarly, D(K) will denote H0(K,D). Let r1(K) and r2(K) denote
the number of real primes and complex primes of K, respectively. We give formulas for the
Λ-coranks of the global and local H1’s. For the global H1, we have

corankΛ

(
H1(KΣ/K,D)

)
= corankΛ

(
D(K)

)
+ corankΛ

(
H2(KΣ/K,D)

)
+ δΛ(K,D) ,

where δΛ(K,D) =
(
r1(K)+r2(K)

)
corankΛ

(
D

)
−

∑
v real corankΛ

(
D(Kv)

)
. Now assume that

v is a non-archimedean prime. We will use the notation D∗ to denote T ∗ ⊗R R̂. If v does
not lie over p, then the local Euler-Poincaré characteristic is 0 and we have

corankΛ

(
H1(Kv,D)

)
= corankΛ

(
D(Kv)

)
+ corankΛ

(
D∗(Kv)

)
.

To justify replacing the Λ-corank of H2(Kv,D) by that of D∗(Kv) in the above formula
as well as the formula below, one uses the fact that the Pontryagin dual of H2(Kv,D) is
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isomorphic to H0(Kv, T
∗). Proposition 3.10 in [Gr4] implies that the Λ-rank of H0(Kv, T

∗)
is equal to the Λ-corank of H0(Kv,D

∗). If v lies over p, then we have

corankΛ

(
H1(Kv,D)

)
= corankΛ

(
D(Kv)

)
+ corankΛ

(
D∗(Kv)

)
+ [Kv : Qp]corankΛ

(
D

)
.

For a non-archimedean prime v, one then needs to know the Λ-corank of L(Kv,D) to deter-
mine the Λ-corank of QL(Kv,D).

2.4. Behavior under specialization. In some proofs, Selmer groups for D[Π], as
well as for D, will occur. Here Π is a prime ideal of Λ and D[Π] is a discrete, cofinitely-
generated module over the ring Λ/Π. Various other modules over Λ/Π will arise. Now Λ/Π
is a complete, Noetherian, local ring, and therefore (just as for R in the introduction), it
is a finite, integral extension of a subring Λ′ which is isomorphic to a formal power series
ring over Zp or Fp. We fix such a choice for each Π and denote Λ′ by ΛΠ. If Λ has Krull
dimension d, then ΛΠ has Krull dimension d − 1. Of course, some results could be easily
stated or proved just in terms of Λ/Π itself.

Many of the above hypotheses are not preserved when the Λ-module D is replaced by the
ΛΠ-module D[Π]. For example, even if RFX(D) is satisfied, D[Π] may fail to be reflexive as
a ΛΠ-module and so RFX(D[Π]) may fail to be satisfied. In general, all one can say is that
RFX(D) implies that D[Π] is a divisible ΛΠ-module for all Π ∈ Specht=1(Λ). The situation

is better for LOC
(1)
v (D) and LEO(D). We have the following equivalences.

• Assume that RFX(D) is satisfied. Then LOC
(1)
v (D) is true if and only if LOC

(1)
v (D[Π])

is true for almost all Π ∈ Specht=1(Λ).

• LEO(D) is true if and only if LEO(D[Π]) is true for almost all Π ∈ Specht=1(Λ).

These assertions follow easily from results in [Gr4]. For the first statement, one should see

remarks 3.5.1 or 3.10.1 there. Note that LOC
(1)
v (D[Π]) and LOC

(2)
v (D[Π]) are statements

about the (Λ/Π)-module Hom(D[Π], µp∞) ∼= T ∗/ΠT ∗. The second of the above equivalences
follows from lemma 4.4.1 and remark 2.1.3 in [Gr4]. We will prove a similar equivalence for
CRK(D,L) in section 3.4.

2.5. A result about almost divisibility. In addition to SUR(D,L) and CRK(D,L),
there will be various other hypotheses concerning the specification L. If L(Kv,D) is Λ-
divisible (resp., almost Λ-divisible) for all v ∈ Σ, then we will say that L is Λ-divisible (resp,
almost Λ-divisible). Consider another specification L′ for D and let L′(Kv,D) denote the
corresponding subgroup of H1(Kv,D) for each v ∈ Σ. We write L′ ⊆ L if L′(Kv,D) ⊆
L(Kv,D) for all v ∈ Σ. In particular, if L′(Kv,D) = L(Kv,D)Λ-div for each v ∈ Σ, then
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we will refer to the specification L′ as the maximal Λ-divisible subspecification of L, which
we denote simply by Ldiv. One assumption that we will usually make is that L is almost
divisible. Its importance is clear from the following proposition.

Proposition 2.5.1. Assume that L′ and L are specifications for D and that L′ ⊆ L. Assume
also that SUR(D,L′) is true. Then SUR(D,L) is also true, SL′(K,D) ⊆ SL(K,D), and

SL(K,D)
/
SL′(K,D) ∼=

∏

v∈Σ

L(Kv,D)
/
L′(Kv,D)

as Λ-modules. In particular, if SUR(D,Ldiv) is true and SLdiv
(K,D) is almost Λ-divisible,

then SL(K,D) is almost Λ-divisible if and only if L is almost Λ-divisible. If SUR(D,Ldiv) is
true and SL(K,D) is almost Λ-divisible, then L must be almost Λ-divisible.

Thus, under certain assumptions, the structure of SL(K,D) can be related to that of
SLdiv

(K,D) and the quotient Λ-modules L(Kv,D)
/
L(Kv,D)div for v ∈ Σ. Since all of

those quotients are cofinitely-generated, cotorsion Λ-module for all v ∈ Σ, it follows that
CRK(D,L) is true if and only if CRK(D,Ldiv) is true.

Proof. Most of the statements are clear from the definitions. For the isomorphism, consider
the following maps:

H1(KΣ/K,D)
φ
L′

−→ QL′(K,D)
ψ

−→ QL(K,D)

where ψ is the natural map, the canonical homomorphism whose kernel is the direct product
in the proposition. The map ψ is surjective and the composition is φL. If φL′ is surjective,
then it follows that φL is also surjective and that SL(K,D)

/
SL′(K,D) is isomorphic to

ker(ψ). The stated isomorphism follows immediately. For the final statements, one takes
L′ = Ldiv. Note that if SL(K,D) is almost divisible, and if one assumes SUR(D,Ldiv), then
there is a surjective homomorphism from SL(K,D) to L(Kv,D)

/
L(Kv,D)Λ-div, which must

therefore be almost divisible too. This implies that L(Kv,D) is then almost divisible. Thus,
L is almost divisible. Moreover, if a discrete, cofinitely-generated Λ-module S contains an
almost divisible Λ-submodule S ′, then it is clear that S is almost divisible if and only if S/S ′

is almost divisible. �

2.6. The main results in [Gr4] and [Gr5]. The following result is proved in [Gr4] .
It is part of the theorem 1 which we alluded to before. It plays a crucial role in this paper
because we will study when SL(K,D) is almost divisible as a Λ-module under the assumption
that H1(KΣ/K,D) is almost divisible, as outlined in the next section.
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Proposition 2.6.1. Suppose that RFX(D) and LEO(D) are satisfied, that LOC
(2)
v (D) is

satisfied for all v in Σ, and that there exists a non-archimedean prime η ∈ Σ such that
LOC

(1)
η (D) is satisfied. Then H1(KΣ/K,D) is an almost divisible Λ-module.

Another part of theorem 1 is the following.

Proposition 2.6.2. Suppose that RFX(D) is satisfied, that LOC
(2)
v (D) is satisfied for all v

in Σ, and that there exists a non-archimedean prime η ∈ Σ such that LOC
(1)
η (D) is satisfied.

Then X
2(K,Σ,D) is a coreflexive Λ-module.

The conclusion in this result has the interesting consequence that the Pontryagin dual of
X

2(K,Σ,D) is torsion-free as a Λ-module. It follows that X
2(K,Σ,D) is Λ-divisible. Hence

either X
2(K,Σ,D) has positive Λ-corank or X

2(K,Σ,D) = 0 under the assumptions in
proposition 2.6.2.

We now state the main result that we need from [Gr5]. It is proposition 3.2.1 there.

Proposition 2.6.3. Suppose that D is divisible as a Λ-module. Assume that LEO(D),
CRK(D,L), and also at least one of the following additional assumptions is satisfied.

(a) D[m] has no subquotient isomorphic to µp for the action of GK,

(b) D is a cofree Λ-module and D[m] has no quotient isomorphic to µp for the action of
GK,

(c) There is a prime η ∈ Σ satisfying the following properties: (i) H0(Kη, T
∗) = 0, and

(ii) QL(Kη,D) is divisible as a Λ-module.

Then φL is surjective.

As mentioned in the introduction, we will apply the above result not just to D, but also to
D[Π] for prime ideals Π of Λ of height 1. Fortunately, if D is itself coreflexive as a Λ-module,
then D[Π] is divisible as a (Λ/Π)-module, and hence satisfies the first hypothesis in the above
proposition.

3 An Outline.

3.1. An exact sequence. Assume that SUR(D,L) is satisfied. We will denote φL

just by φ, although we will continue to indicate the L for other objects. We have an exact
sequence

(3) 0 −→ SL(K,D) −→ H1(KΣ/K,D)
φ

−→QL(K,D) −→ 0
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of discrete Λ-modules. Suppose that Π ∈ Specht=1(Λ) and that π is a generator of Π.
Applying the snake lemma to the exact sequence (3) and to the endomorphisms of each of
the above modules induced by multiplication by π, we obtain the following important exact
sequence

H1(KΣ/K,D)[π]
αΠ−→ QL(K,D)[π]

SL(K,D)/πSL(K,D) −→ H1(KΣ/K,D)/πH1(KΣ/K,D)

�
��

� -

Now assume additionally that H1(KΣ/K,D) is an almost divisible Λ-module. The last
term in the above exact sequence is then trivial for almost all Π ∈ Specht=1(Λ). Therefore,
under these assumptions, the assertion that SL(K,D) is almost divisible is equivalent to the
assertion that αΠ is surjective for almost all Π ∈ Specht=1(Λ). We study the surjectivity of
αΠ by considering the (Λ/Π)-module D[π].

Remark 3.1.1. One can ask if mSL(K,D) = SL(K,D), where m denotes the maximal
ideal of Λ. This would mean that the Pontryagin dual X of SL(K,D) has no nonzero, finite
Λ-submodules. For if Z is the maximal finite Λ-submodule of X , then Z[m] = X [m] is the
Pontryagin dual of SL(K,D)

/
mSL(K,D). This is trivial if and only if Z itself is trivial.

One sees easily that if Z 6= 0, then Z[π] 6= 0 for all Π ∈ Specht=1(Λ). As a consequence,
if one can show that αΠ is surjective for infinitely many Π’s in Specht=1(Λ), then it would
follow that mSL(K,D) = SL(K,D). This observation is especially useful if Λ has Krull
dimension 2. In that case, it follows that SL(K,D) is almost divisible if and only if αΠ is
surjective for infinitely many Π’s in Specht=1(Λ). ♦

Remark 3.1.2. Let X again be the Pontryagin dual of SL(K,D). We assume that the
Krull dimension of Λ is at least 2. Let Y denote the maximal pseudo-null Λ-submodule of X .
Corollary 2.5.1 in [Gr4] implies that there exist infinitely many prime ideals Π in Specht=1(Λ)
such that Y = X [Π]. Let us denote the orthogonal complement of Y by SL(K,D)adiv. Since
X /Y has no nontrivial pseudo-null Λ-submodules, it follows that SL(K,D)adiv is the maximal,
almost divisible Λ-submodule of SL(K,D). Furthermore, if Y = X [Π] and Π = (π), then we
have

πSL(K,D) = SL(K,D)adiv .

This equality will be true for infinitely many Π’s in Specht=1(Λ). ♦
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3.2. The cokernel of αΠ. Now let us assume just that D is divisible and cofinitely
generated as a Λ-module. We then have an exact sequence

0 −→ D[π] −→ D −→ D −→ 0

induced by multiplication by π. If D arises from a representation ρ as described in the
introduction, and if R is a domain, then D will certainly be Λ-divisible. As a consequence,
the following global and local “specialization” maps are surjective:

hΠ : H1(KΣ/K,D[π]) −→ H1(KΣ/K,D)[π], hΠ,v : H1(Kv,D[π]) −→ H1(Kv,D)[π]

We can compare the exact sequence (3) with an analogous sequence for D[π], viewed as a
(Λ

/
Π)-module. For this purpose, we define a specification LΠ for D[π] as follows: For each

v ∈ Σ, let us take
L(Kv,D[π]) = h−1

Π,v

(
L(Kv,D)

)

which is a (Λ/Π)-submodule of H1(Kv,D[π]). If we think of L as fixed, we will refer to the
specification LΠ just defined as the “L-maximal specification for D[π]”. Using the analogous
notation to that for D, we have

P (K,D[π]) =
∏

v∈Σ

H1(Kv,D[π]), QLΠ
(K,D[π]) = P (K,D[π])

/
L(K,D[π])

where L(K,D[π]) =
∏

v∈Σ L(Kv,D[π]). We can then define the corresponding global-to-local
map

φLΠ
: H1(KΣ/K,D[π]) −→ QLΠ

(K,D[π])

We will usually denote the map φLΠ
simply by φΠ. The product of the hΠ,v’s for v ∈ Σ defines

a map bΠ : P (K,D[π]) → P (K,D)[π]. The image of L(K,D[π]) under bΠ is contained in
L(K,D) and so we get a well-defined map

qΠ : QLΠ
(K,D[π]) −→ QL(K,D)[π] .

The definition of LΠ implies that qΠ is injective. Furthermore, it is easy to see that if L(K,D)
is divisible by π, then the map cΠ : P (K,D)[π] → QL(K,D)[π] will be surjective. Since the
map bΠ is also surjective, it would then follow that cΠ◦bΠ is also surjective. This would imply
that qΠ is surjective. Thus, assuming that D is Λ-divisible and that L is almost Λ-divisible,
we see that qΠ is then an isomorphism for almost all Π ∈ Specht=1(Λ).

We have the following commutative diagram whose rows are exact:

0 // SLΠ
(K,D[π]) //

sΠ

��

H1(KΣ/K,D[π])
φΠ

//

hΠ

��

QLΠ
(K,D[π])

qΠ

��

0 // SL(K,D)[π] // H1(KΣ/K,D)[π]
αΠ

// QL(K,D)[π]
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The map sΠ is defined since, by definition, the image of SLΠ
(K,D[π]) under the map hΠ is

contained in SL(K,D)[π]. Although it is not needed now, we remark in passing that the
injectivity of the map qΠ and the surjectivity of the map hΠ imply that sΠ is also surjective.
The important consequence for us is that qΠ maps im(φΠ) isomorphically to im(αΠ) and
induces an isomorphism

(4) coker(αΠ) ∼= coker(φΠ)

for almost all Π ∈ Specht=1(Λ). To be precise, this is true whenever L(K,D) is divisible by a
generator of Π. In particular, for such Π, the surjectivity of αΠ and φΠ would be equivalent.
These remarks are valid just under the assumptions that D is Λ-divisible and that L is almost
divisible. Our approach is then to find suitable additional hypotheses which guarantee the
surjectivity of φΠ for almost all prime ideals Π of Λ of height 1.

To summarize, if we make the assumptions that D is Λ-divisible, that H1(KΣ/K,D) is
almost Λ-divisible, that the specification L is almost Λ-divisible, and that SUR(D,L) holds,
then SL(K,D) is almost divisible if and only if φΠ is surjective for almost all Π ∈ Specht=1(Λ).

3.3. The case where φL is not surjective. We will prove the theorem of Iwasawa stated
in the introduction in section 4.2. In most cases, it will turn out that the map φL occurring
in that situation is surjective. However, this is not so if F = K(µp). Nevertheless, we will
prove Iwasawa’s theorem by using the following modification of the observations in sections
3.1 and 3.2.

In the exact sequence (3), we can simply replace QL(K,D) by the image of φ = φL, which
we will denote by Q′

L(K,D). We then can consider the map

α′

Π : H1(KΣ/K,D)[π] −→ Q′

L(K,D)[π] .

Applying the snake lemma as before, and assuming that H1(KΣ/K,D) is almost Λ-divisible,
we see that SL(K,D) is almost Λ-divisible if and only if α′

Π is surjective for almost all
Π ∈ Specht=1(Λ).

In addition to assuming that H1(KΣ/K,D) is almost Λ-divisible, let us assume that D
is Λ-divisible and that the specification L is almost Λ-divisible. If H1(KΣ/K,D) is divisible
by π, then so is Q′

L(K,D). Therefore, Q′
L(K,D) is almost Λ-divisible. We have an exact

sequence
0 −→ Q′

L(K,D) −→ QL(K,D) −→ coker(φ) −→ 0

and hence, by the snake lemma, the map βΠ : QL(K,D)[π] → coker(φ)[π] is surjective for
almost all Π ∈ Specht=1(Λ). The kernel of βΠ is Q′

L(K,D)[π].
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The map qΠ sends im(φΠ) to im(αΠ) = im(α′
Π). For almost all Π ∈ Specht=1(Λ), we have

isomorphisms

coker(α′

Π) ∼= ker
(
βΠ ◦ qΠ

)/
im(φΠ) ∼= ker

(
coker(φΠ) → coker(φ)[π]

)

and we therefore conclude that SL(K,D) is almost Λ-divisible if and only if the map

(5) coker(φΠ) −→ coker(φ)[π]

is injective for almost all Π ∈ Specht=1(Λ). Note that (5) is surjective for almost all Π’s
because that is true for the maps βΠ and qΠ.

3.4. Behavior of the corank hypothesis under specialization. We complete the
discussion in section 2.4. We want to justify the following equivalence.

• CRK(D,L) is true if and only if CRK(D[Π],LΠ) is true for almost all Π ∈ Specht=1(Λ).

According to remark 2.1.3 in [Gr4], coker(φ) is Λ-cotorsion if and only if coker
(
αΠ) is

(Λ/Π)-cotorsion for almost all Π ∈ Specht=1(Λ). If we assume that L is almost Λ-divisible,
then we have the isomorphism (4) for almost all Π’s. Since Λ/Π is a finitely-generated ΛΠ-
module, it follows that coker(φ) is Λ-cotorsion if and only if coker

(
φΠ) is ΛΠ-cotorsion for

almost all Π ∈ Specht=1(Λ), which is the stated equivalence.
The assumption that L is almost Λ-divisible is not needed. Suppose that Π = (π) is

an arbitrary element of Specht=1(Λ). Referring to the discussion in section 3.2, we have an
injective map

(6) coker
(
φΠ

)
−→ coker

(
αΠ

)
.

induced by qΠ. Furthermore, the cokernel of (6) is isomorphic to coker
(
qΠ

)
. The stated

equivalence will follow if we show that coker
(
qΠ

)
is (Λ/Π)-cotorsion for almost all Π’s. Using

the notation from section 3.2, we have coker
(
qΠ

)
= coker

(
cΠ

)
. We then obtain another

injective map
coker

(
qΠ

)
−→ L(K,D)

/
πL(K,D) .

Thus, it suffices to show that L(K,D)
/
πL(K,D) is (Λ/Π)-cotorsion for almost all Π ∈

Specht=1(Λ).

In general, suppose that A is a discrete, cofinitely-generated Λ-module and that X is the
Pontryagin dual of A. Let Z denote the maximal pseudo-null Λ-submodule of X and let B
denote the orthogonal complement of Z. Thus, B ⊆ A. Let C = A/B. The Pontryagin duals
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of B and C are X /Z and Z, respectively. It follows that B is the maximal almost Λ-divisible
Λ-submodule of A. Furthermore, by definition, Z is annihilated by a nonzero element of Λ
relatively prime to π, and so Z[π] is a torsion (Λ/Π)-module. Thus, C

/
πC is (Λ/Π)-cotorsion.

If we choose Π so that πB = B, it follows that A/πA ∼= C/πC. Applying these considerations
to A = L(K,D), we see that L(K,D)

/
πL(K,D) is indeed (Λ/Π)-cotorsion for almost all

Π ∈ Specht=1(Λ).

4 Sufficient conditions for almost divisibility.

We will prove a rather general result in section 4.1. Section 4.2 discusses the verification of
various hypotheses in that result. Section 4.3 will concern a special case (although still quite
general) where several of the hypotheses are automatically satisfied.

4.1. The main theorem. We prove the following result.

Proposition 4.1.1. Suppose that RFX(D) and LEO(D) are satisfied, that LOC
(2)
v (D)

is satisfied for all v in Σ, and that there exists a non-archimedean prime η ∈ Σ such that
LOC

(1)
η (D) is satisfied. Suppose also that L is almost divisible, that CRK(D,L) is satisfied,

and also that at least one of the following additional assumptions is satisfied.

(a) D[m] has no subquotient isomorphic to µp for the action of GK,

(b) D is a cofree Λ-module and D[m] has no quotient isomorphic to µp for the action of
GK,

(c) There is a prime η ∈ Σ which satisfies LOC
(1)
η (D) and such that QL(Kη,D) is core-

flexive as a Λ-module.

Then SL(K,D) is an almost divisible Λ-module.

Proof. First of all, RFX(D), LEO(D), and the assumptions about LOC
(1)
v and LOC

(2)
v are

sufficient to imply that H1(KΣ/K,D) is an almost divisible Λ-module. This follows from
proposition 2.6.1. Secondly, since RFX(D) holds, D is certainly Λ-divisible. We can apply
proposition 2.6.3 to conclude that SUR(D,L) is satisfied too.

Thus, as described in section 3.1, it suffices to show that the map

αΠ : H1(KΣ/K,D)[π] −→ QL(K,D)[π]
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is surjective for almost all Π = (π) in Specht=1(Λ). In the rest of this proof, we will exclude
finitely many Π’s in Specht=1(Λ) in each step, and altogether just finitely many. We will
follow the approach outlined in section 3, reducing the question to studying coker(φΠ) and
then applying proposition 2.6.3. We want to apply that proposition to D[π] and so must
verify the appropiate hypotheses. At each step, we consider just the Π’s which have not been
already excluded. As described in section 2, we regard various (Λ/Π)-modules as modules
over a certain subring ΛΠ.

Since RFX(D) holds for D, it follows that D[π] is a divisible (Λ/Π)-module. Corollary
2.6.1 in [Gr4] justifies that assertion. Therefore, D[π] is also divisible as a ΛΠ-module. Fur-
thermore, the assumption LEO(D) means that X

2(K,Σ,D) is Λ-cotorsion. Consequently,
X

2(K,Σ,D)[π] is a cotorsion (Λ/Π)-module for almost all Π ∈ Specht=1(Λ). This follows
from remark 2.1.3 in [Gr4]. The same is true for X

2(K,Σ,D[π]) according to lemma 4.1.1
in [Gr4]. Recall that Λ/Π is finitely-generated as a ΛΠ-module. It follows that LEO(D[π])
holds for almost all Π ∈ Specht=1(Λ).

The fact that CRK(D,L) is satisfied implies that CRK(D[Π],LΠ) is satisfied for almost
all Π ∈ Specht=1(Λ). This follows from section 3.4. Thus, we can assume from here on that
coker(φΠ) is ΛΠ-cotorsion. Now we consider the additional assumptions. Each implies the
corresponding assumption in proposition 2.6.3. Once we verify that, it will then follow that
φΠ is surjective for almost all Π ∈ Specht=1(Λ). Hence the same thing will be true for αΠ.
This will prove that SL(K,D) is indeed almost divisible as a Λ-module.

First assume that (a) is satisfied. Let mΠ denote the maximal ideal of ΛΠ. Using
proposition 3.8 in [Gr4], it follows that D[π][mΠ] indeed has no subquotient isomorphic
to µp. Now assume that (b) is satisfied. Then D[π] is cofree as a (Λ/Π)-module. Since
Π is principal, Λ/Π is a complete intersection, and hence a Cohen-Macaulay domain. It
follows that Λ/Π is a free ΛΠ-module. Hence D[π] is cofree as a ΛΠ-module. Furthermore,
D[m] = D[π][m] has no quotient isomorphic to µp for the action of GK . Remark 3.2.2 in [Gr5]
implies that the same thing is true for D[π][mΠ]. Thus, the assumption (b) in proposition
2.6.3 for the ΛΠ-module D[π] is indeed satisfied.

Now assume that (c) is satisfied. As pointed out in section 2.4, LOC
(1)
η (D[π]) is satisfied

for almost all Π ∈ Specht=1(Λ). Since D is Λ-divisible and L(Kη,D) is almost divisible, we
have

QLΠ
(Kη,D[π]) ∼= QL(Kη,D)[π]

for almost all Π’s. It suffices to have L(Kη,D) divisible by π. The assumption thatQL(Kη,D)
is a coreflexive Λ-module then implies that QLΠ

(Kη,D[π]) is (Λ/Π)-divisible, and hence ΛΠ-
divisible, which is the only assumption in proposition 2.6.3(c) left to verify. �
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Now we consider “non-primitive” Selmer groups. Suppose that Σ
0

is a subset of Σ
consisting of non-archimedean primes. Consider the map

φ
L,Σ0

: H1(KΣ/K,D) −→
∏

v∈Σ−Σ0

QL(Kv,D) .

We denote the kernel of φ
L,Σ0

by SΣ0

L
(K,D). We refer to this group as the non-primitive

Selmer group corresponding to the specification L and the set Σ
0
. It is defined just as

SL(K,D), but one omits the local conditions for the specification L corresponding to the
primes v ∈ Σ

0
. Of course, we have the obvious inclusion SL(K,D) ⊆ SΣ0

L
(K,D) and the cor-

responding quotient SΣ0

L
(K,D)

/
SL(K,D) is isomorphic to a Λ-submodule of

∏
v∈Σ0

QL(Kv,D).

In effect, SΣ0

L
(K,D) is the Selmer group corresponding to a new specification L′, where we

simply replace L(Kv,D) by L′(Kv,D) = H1(Kv,D) for all v ∈ Σ
0
. Thus, we now have

QL′(Kv,D) = 0 for v ∈ Σ
0
. The following corollary then follows immediately from proposi-

tion 4.1.1(c).

Corollary 4.1.2. Suppose that RFX(D) and LEO(D) are satisfied, that LOC
(2)
v (D) is satis-

fied for all v in Σ, and that there exists a non-archimedean prime η ∈ Σ
0
such that LOC

(1)
η (D)

is satisfied. Suppose also that L is almost divisible and that CRK(D,L) is satisfied. Then
SΣ0

L
(K,D) is an almost divisible Λ-module.

Remark 4.1.3. Suppose that η is a non-archimedean prime not dividing p. Regarding D[m]
as an Fp-representation space for GKη

, suppose that it has no subquotients isomorphic to
µp. According to proposition 3.1 in [Gr4], the GKη

-module D[mt] has the same property
for all t ≥ 1. The local duality theorems imply that H0(Kη,D[mt]) and H2(Kη,D[mt])
both vanish, and therefore that H1(Kη,D[mt]) = 0. It follows that H1(Kη,D) = 0. If

we let Σ
0

= {η}, then we have SΣ0

L
(K,D) = SL(K,D). The hypothesis LOC

(1)
η (D) is also

satisfied. Consequently, if the other assumptions in corollary 4.1.2 are satisfied, it follows
that SL(K,D) is almost divisible as a Λ-module.

4.2. Verifying the hypotheses. We will discuss the various hypotheses in proposition
4.1.1. Some of them are already needed for propositions 2.6.1 and 2.6.3, and we may simply
refer to discussions in [Gr4] and [Gr5]. We have nothing additional to say about RFX(D).
If D is R-cofree, then that hypothesis is just that R is a reflexive ring.

The local hypotheses. There is a discussion of the verification of LOC
(1)
v (D) and LOC

(2)
v (D)

in section 5, part F of [Gr4]. Most commonly, LOC
(1)
v (D) is satisfied for all non-archimedean

primes v ∈ Σ simply because H0(Kv, T
∗) = 0 for those v’s. That is a rather mild condition,

although we mention one kind of example in section 4.3 where it may fail to be so. Such
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examples were one motivation for introducing LOC
(2)
v (D) as a hypothesis in [Gr4]. Another

motivation is that for archimedean primes, H0(Kv, T
∗) is often nontrivial, but LOC

(2)
v (D)

may still be satisfied. The archimedean primes are only an issue when p = 2.

The hypotheses CRK(D,L) and LEO(D). Of course, the validity of CRK(D,L) is related
to the choice of the specification L. We will discuss one rather natural way of choosing a
specification below. In [Gr5], one defines cL(K,D) to be the Λ-corank of the cokernel of φL.
Thus, CRK(D,L) means that cL(K,D) = 0. As discussed in the introduction to [Gr5], one
has an equation

sL(K,D) = b1(K,D) − qL(K,D) + cL(K,D) + corankΛ

(
X

2(K,Σ,D)
)
,

where sL(K,D) and qL(K,D) are the Λ-coranks of SL(K,D) and QL(K,D), respectively.
The integer b1(K,D) is defined just in terms of the Euler-Poincaré characteristic for D and
the Λ-coranks of some local Galois cohomology groups, and does not depend on L. It occurs
in proposition 4.3 in [Gr4]. One then has a lower bound

sL(K,D) ≥ b1(K,D) − qL(K,D)

and equality means that both CRK(D,L) and LEO(D) are satisfied. We also remark that
section 6, part D in [Gr4] is a discussion of LEO(D), which is called hypothesis L there.

The additional assumptions in proposition 4.1.1. Remark 3.2.2 in [Gr5] discusses the ad-
ditional assumptions (a) and (b). It includes some observations when D arises from an
n-dimensional representation ρ of Gal(KΣ/K) over a ring R, as in the introduction. One
observation is that if n ≥ 2 and if the residual representation ρ̃ is irreducible over the finite
field R/M, then hypothesis (a) is satisfied. The residual representation gives the action
of Gal(KΣ/K) on D[M]. Another observation in that remark is that D[m] has a quotient
isomorphic to µp if and only if D[M] has such a quotient.

As an illustration, if there is a prime ideal p of R such that T /pT is isomorphic to the
p-adic Tate module Tp(E) for an elliptic curve E defined over K, then D[M] ∼= E[p] as
Galois modules. It is not uncommon for E[p] to be irreducible. This just means that E has
no isogenies of degree p defined over K. Furthermore, the Weil pairing E[p] × E[p] → µp is
Galois-equivariant. Hence E[p] has a quotient isomorphic to µp if and only if E(K) has a
point of order p. Also, E[p] has a subquotient isomorphic to µp if and only if E is isogenous
over K to an elliptic curve E ′ such that E ′(K) has a point of order p.

We now discuss hypothesis (c). This will be useful if D[m] has a quotient or subquotient
isomorphic to µp for the action of GK . We will assume that η is a non-archimedean prime in

Σ and that LOC
(1)
η (D) is satisfied. The issue is the coreflexivity of QL(Kη,D) as a Λ-module.

Suppose that we assume that H1(Kη,D) is Λ-coreflexive and that L(Kη,D) is almost
Λ-divisible. The first assumption implies that H1(Kη, T

∗) is a reflexive Λ-module. Also,the
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Λ-module Q(Kη, T
∗) is the Pontryagin dual of L(Kη,D), and so the second assumption

implies that Q(Kη, T
∗) contains no nonzero, pseudo-null Λ-submodules. Combining these

observations, it follows that L(Kη, T
∗) is a reflexive Λ-module. Therefore, it follows that its

Pontryagin dual QL(Kη,D) is coreflexive as a Λ-module.
Section 5, part D of [Gr4] gives some sufficient conditions for H1(Kη,D) to be coreflexive.

One condition requires the assumption that µp is not a quotient of D[m] as a GKη
-module.

However, that assumption clearly implies assumption (a) in proposition 4.1.1. Another more

subtle sufficient condition is given in proposition 5.9 in loc cit. It involves T ∗ ⊗Λ Λ̂ which
is denoted by D∗ there. We are assuming that H0(Kη, T

∗) = 0. Equivalently, that means
that H0(Kη,D

∗) is Λ-cotorsion. We denote that module more compactly by D∗(Kη). Its

Pontryagin dual D̂∗(Kη) is a torsion Λ-module. The result from [Gr4] is that if D is Λ-cofree

and if every associated prime ideal for the torsion Λ-module D̂∗(Kη) has height at least 3,
then H1(Kη,D) is coreflexive as a Λ-module. Section 4.3 will discuss some cases where this
hypothesis is satisfied.

Even if H1(Kη,D) fails to be coreflexive, it is still possible for the quotient Λ-module
QL(Kη,D) to be coreflexive. Consider the following natural way to specify a choice of
L(Kη,D). Suppose that Cη is aGKη

-invariant Λ-submodule of D and that we haveH2(Kη, Cη) =
0. Then we can define

L(Kη,D) = im
(
H1(Kη, Cη) −→ H1(Kη,D)

)
.

Let Eη = D/Cη. The the map H1(Kη,D) → H1(Kη, Eη) is surjective and its kernel is
L(Kη,D). If η ∤ p, then one can take Cη = 0 and hence L(Kη,D) = 0. This is often a useful
choice. If η|p, then one often will make a nontrivial choice of Cη. This kind of definition
occurs in [Gr2] for primes above p when a Galois representation ρ satisfies something we
called a “Panchiskin condition.” (See section 4 in loc cit.) Under the stated assumptions,
we have

QL(Kη,D) ∼= H1(Kη, Eη)

as Λ-modules. Propositions 5.8 and 5.9 from [Gr4] then give the following result.

Proposition 4.2.1. In addition to the assumption that H2(Kη, Cη) = 0, suppose that either
one of the following assumptions is satisfied.

(i) Eη is Λ-coreflexive and Eη[m] has no subquotient isomorphic to µp as a GKη
-module,

(ii) Eη is Λ-cofree and every associated prime ideal for the Λ-module Ê∗
η (Kη) has height at

least 3.
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Then the Λ-module QL(Kη,D) is coreflexive.

Concerning (i), note that it may be satisfied even if assumption (a) in proposition 4.1.1
fails to be satisfied. One such situation will be mentioned in section 4.3. We will also want
L(Kη, Cη) to be almost Λ-divisible. The following result follows immediately from proposition
5.3 in [Gr4].

Proposition 4.2.2. Assume that Cη is Λ-coreflexive and that H2(Kη, Cη) = 0. Then
H1(Kη, Cη) is almost Λ-divisible. Hence the image of H1(Kη, Cη) in H1(Kη,D) is also almost
Λ-divisible.

4.3. Twist deformations. Suppose that T is a free Zp-module of rank n which has an
action of Gal(KΣ/K). Thus, we have a continuous homomorphism Gal(KΣ/K) → AutZp

(T ).
Suppose also that K∞/K is a Galois extension such that Gal(K∞/K) ∼= Zm

p for some m ≥ 1.
We let Λ = Zp[[Gal(K∞/K]] denote the completed group ring for Gal(K∞/K) over Zp. Thus,
Λ is isomorphic to a formal power series ring in m variables over Zp. In this situation, one
can define a free Λ-module T of rank n together with a homomorphism ρ : Gal(KΣ/K) →
AutΛ(T ). This is described in section 5 of [Gr5] in detail, where T is denoted by T ⊗ κ.
Here κ is the natural embedding of Γ into Λ× and one thinks of T as the twist of T by
the Λ×-valued character κ. Just as in the introduction, taking R = Λ, one can define
D = T ⊗Λ Λ̂. This discrete, Λ-cofree Gal(KΣ/K)-module D is denoted by D ⊗ κ in [Gr5],
where D = T ⊗Zp

(Qp/Zp).
Obviously, RFX(D) is satisfied. Furthermore, it is shown in part F of section 5 in [Gr4]

that LOC
(2)
v (D) is satisfied for all v in Σ. Lemma 5.2.2 in [Gr5] shows that LOC

(1)
η (D) is

satisfied for at least one η in Σ. In fact, that hypothesis holds for any prime η which does
not split completely in K∞/K. In particular, LOC

(1)
η (D) is satisfied for at least one prime η

lying over p.
It is reasonable to conjecture that LEO(D) is satisfied. This is stated as conjecture

5.2.1 in [Gr5] and is equivalent to conjecture L stated in the introduction to [Gr4]. Section
5.2 in [Gr4] discusses its validity. It is proved in certain special cases. In the rest of this
discussion, we will assume that LEO(D) is satisfied, that one has chosen an almost Λ-divisible
specification L, and that CRK(D,L) is also satisfied. Thus, we can apply proposition 4.1.1
if we verify any of the additional assumptions (a), (b), or (c). Since D is Λ-cofree, it suffices
to verify either (b) or (c).

As for (b), we merely point out that D[m] ∼= D[p] ∼= T/pT . One can illustrate this
case when T = Tp(E), the p-adic Tate module for an elliptic curve defined over K. We
then have T/pT ∼= E[p]. The properties of the Weil pairing E[p] × E[p] → µp show that
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assumption (b) is satisfied if and only if E(K) has no element of order p. Thus, if we assume
that E(K)[p] = 0, that LEO(D) is indeed satisfied, that L is almost Λ-divisible, and that
CRK(D,L) is satisfied, then SL(K,D) is almost Λ-divisible.

As another illustration, suppose that K is totally real, that F is an imaginary quadratic
extension of K, that T = Zp, and that GK acts on T by that nontrivial character ψ factoring
through Gal(F/K). According to Leopoldt’s conjecture for K and p, we have m = 1 and
K∞ is just the cyclotomic Zp-extension of K. We take L to be the trivial specification:
L(Kv,D) = 0 for all v ∈ Σ. Thus, SL(K,D) = X

1(K,Σ,D). In this case, just as explained
in illustration 5.2.6 in [Gr5], LEO(D) and CRK(D,L) are both satisfied. Assumption (b) just
means that F 6= K(µp). Thus, proposition 4.1.1 implies that SL(K,D) is almost Λ-divisible,
except in the case F = Q(µp). Of course, that case only occurs when [K(µp) : K] = 2.

Assumption (c) also fails in the case where F = Q(µp). In fact, the map φL is not
surjective. However, one can use the result from section 3.3 to settle this case. One shows
that the map (5) is injective for infinitely many Π ∈ Specht=1(Λ) by showing that both
groups have the same order. The map is surjective, and will therefore be injective. Since Λ
has Krull dimension 2, proving injectivity for infinitely many Π’s is sufficient, as explained
in remark 3.1.1.

The above illustrations are very closely related to the classical theorems mentioned in
the beginning of the introduction. The Selmer groups SL(K,D) which we just considered
are isomorphic as Λ-modules to the ones arising in those theorems. The relationship is based
on a version of Shapiro’s lemma. One finds this discussed without proof in the introduction
to [Gr4]. In particular, see the discussion surrounding theorem 2 in that paper. We intend
to justify this relationship completely in [Gr6]
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